the asymptotics of the holomorphic torsion form
play

The asymptotics of the holomorphic torsion form Martin Puchol - PowerPoint PPT Presentation

Introduction Definition Statement of the result Tplitz operators Asymptotic heat kernel The asymptotics of the holomorphic torsion form Martin Puchol Institut Camille Jordan Universit Lyon 1 Index Theory and Singular Structures


  1. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel The asymptotics of the holomorphic torsion form Martin Puchol Institut Camille Jordan – Université Lyon 1 Index Theory and Singular Structures – Toulouse May 30, 2017 1/21

  2. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Sommaire Introduction 1 Definition 2 Statement of the result 3 Tœplitz operators 4 Asymptotic heat kernel 5 2/21

  3. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel The holomorphic analytic torsion is a spectral invariant introduced by Ray and Singer in 1973 as the complex analogue of the real torsion. It is given as a weighted determinant of the Kodaira Laplacian of a holomorphic Hermitian bundle ( E , h E ) on a compact complex Riemannian manifold ( M , g TM ) . � � dim M � det ζ ( � E | Ω 0 , k ) ( − 1 ) k k . τ ( g TM , h E ) exp := k = 0 It plays a role in the study of the determinant of the direct image of a holomorphic vector bundle under a holomorphic proper fibration (Bismut, Gillet et Soulé). � used in Arakelov geometry. 3/21

  4. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel In 1989, Bismut and Vasserot computed the asymptotics when p → + ∞ of the torsion associated with L p = L ⊗ p , L a positive line bundle. Ex. of application: arithmetic version of the Hilbert-Samuel theorem by Gillet-Soulé in Arakelov geometry (estimation of the number of arithmetic sections of small norm). In 1990, Bismut and Vasserot extended their result with L p ← → S p ( E ) , the p th symmetric power of a positive bundle E . 4/21

  5. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Extension for families: the holomorphic analytic torsion form. Defined first by Bismut-Gillet-Soulé and in greater generality by Bismut-Köhler (1992). Consider a family { ( X b , g TX b ) } b ∈ B of Riemannian compact complex manifolds, more precisely: π : M → B holo. proper fibration with fiber X and B compact. ω M (1,1)-form on M inducing metrics on the fibers. Assume ω M is closed. Consider also ( E , h E ) be a holo. Herm. vector bundle on M . � T ( ω M , h E ) ∈ Ω 2 • ( B ) . 5/21

  6. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel T ( 0 ) = Ray-Singer torsion along the fiber, and it appears in a refinement of the Riemann-Roch-Grothendieck theorem: � � R • π ∗ E , h R • π ∗ E � Td ( TX , h TX ) ch ( E , h E ) ch − X ¯ ∂∂ 2 i π T ( ω M , h E ) . = Also plays a role in the theory of direct image in Arakelov geometry: π ! : � K 0 ( M ) → � K 0 ( B ) given by � ( − 1 ) j ( R j π ∗ E , h R j π ∗ E , 0 ) π ! ( E , h E , α ) = � � � 0 , 0 , −T ( ω M , h E ) + Td ( TX , g TX ) α + . X Thus it appears in the arithmetic RRG theorem. Here we want to extend the results of Bismut-Vasserot for T . 6/21

  7. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Sommaire Introduction 1 Definition 2 Statement of the result 3 Tœplitz operators 4 Asymptotic heat kernel 5 7/21

  8. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Finite dim. model : transgression of the Chern character ( B , g TB ) Riemannian compact complex manifold. E • = 0 δ δ → E m → 0 complex of holomorphic δ → E 1 → . . . vector bundles. h E • metric on E • , ∇ E • associated Chern connection (preserves Herm. and holo. structures). H ( E • , δ ) cohomology. Assume it is a smooth bundle. Let ∇ H be the connection induced by ∇ E • . We know: ch ( E • ) = ch ( H ( E • , δ )) ∈ H ( B ) . 8/21

  9. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Finite dim. model : transgression of the Chern character D = δ + δ ∗ . Then ∇ u = ∇ E • + √ uD connection on E • and ch ( ∇ u ) := Tr s [ e −∇ 2 u ] = Tr | E even [ e −∇ 2 u ] − Tr | E odd [ e −∇ 2 u ] . Let N s.t. N | E k = k . Id E k . Then � 1 � � � ∂ Ne −∇ 2 ∂ u ch ( ∇ u ) = − ¯ u Tr s ∂∂ . u Let � + ∞ � � ζ ( s ) = − 1 u s − 1 Tr s Ne −∇ 2 du . u Γ( s ) 0 � � � + ∞ Ne −∇ 2 Then ζ ′ ( 0 ) = du Tr s u . u 0 Conclusion: ch ( E • , ∇ E • ) − ch ( H ( E • , δ ) , ∇ H ) = − ¯ ∂∂ζ ′ ( 0 ) . 9/21

  10. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Infinite dimensional bundle π : M → B a proper holomorphic fibration with fiber X . ω M a (1,1)-form on M . Definition ( π, ω M ) is a Kähler fibration if ω is closed, 1 � U , V � TX = ω ( U , JV ) for U , V ∈ TX define a fiberwise metric. 2 ( E , h E ) holo. Herm. vector bundle on M . E infinite dimensional bundle on B : E • b = Ω 0 , • ( X b , E | X b ) ( C -antilinear forms ) . Endowed with the L 2 -product. Chern connections on E , TX � ∇ E • connection on E • . 10/21

  11. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Bismut’s superconnection X b = ¯ X b + ¯ ∂ E , ∗ D E ∂ E X b Dirac operator of the fiber X b , acting on E • b . Definition The Bismut’s superconnection is an operator acting on Ω • ( B , E • ) : B u = ∇ E • + √ uD E X + . . . Theorem (Bismut) u = uD E , 2 B 2 + N E ∈ Ω • ( B , End ( E • )) , X u where N E u is a fiberwise nilpotent operator of order 1. In particular, B 2 u fiberwise elliptic operator of order 2 and its fiberwise heat kernel exp ( − B 2 u ) is well-defined. 11/21

  12. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Holomorphic torsion form N number operator on E • . ω H = ω M | T H M × T H M and N u = N − i ω H u . Let � + ∞ � � ζ ( s ) = − 1 u s − 1 Tr s N u e − B 2 du . u Γ( s ) 0 Then ζ admits a holomorphic extension near 0. Definition The holomorphic analytic torsion form is T ( ω M , h E ) = ζ ′ ( 0 ) . 12/21

  13. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Sommaire Introduction 1 Definition 2 Statement of the result 3 Tœplitz operators 4 Asymptotic heat kernel 5 13/21

  14. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel π 1 : N → M and π 2 : M → B two proper holomorphic fibrations with fibers Y and X . π 3 := π 2 ◦ π 1 : N → B , with fiber Z . ( π 2 , ω M ) a structure of Kähler fibration on M . ( L , h L ) holo. Herm. line bundle on N , with Chern curvature R L . Assume that L | Z is a positive bundle, i.e., R L | Z positive (1,1)-form. For p ≫ 1, F p := H 0 � � Y , L p | Y is a holo. Herm. vector bundle on M . � T ( ω M , h F p ) associated torsion form. 14/21

  15. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel ⇒ we can identify R L | TX to a Herm. matrix ˙ R X , L �· , ·� TX = n Z = dim C Z . Let ψ p ∈ End (Λ even ( T ∗ B )) such that for α ∈ Λ 2 k ( T ∗ R B ) , ψ p α = p − k α . Theorem (P.) As p → + ∞ , � �� � � �� � � p ˙ R X , L T ( ω M , h F p ) − 1 e p . c 1 ( L , h L ) ψ p log det 2 2 π Z = o ( p n Z ) , for the C ∞ topology on B . 15/21

  16. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Steps of the proof: � � � + ∞ u s − 1 Tr s N u e − B 2 1 ζ p ( s ) = − 1 du implies p , u Γ( s ) 0 � � du � 1 � � − C p , − 1 T ( ω M , h F p ) = − N u exp ( − B 2 − C p , 0 Tr s p , u ) u u 0 � + ∞ � � du N u exp ( − B 2 u + C p , − 1 + Γ ′ ( 1 ) C p , 0 . − Tr s u ) 1 2 Get the asymptotics of the heat kernel + asymptotics of the C p , i + dominations and use dominated convergence theorem ⇒ “ ζ ′ p ( 0 ) → ζ ′ = ∞ ( 0 ) ”. 3 Compute ζ ′ ∞ ( 0 ) . Main difficulty: e − B p , u ( · , · ) ∈ Λ • ( T ∗ B ) ⊗ End (Λ 0 , • ( T ∗ X ) ⊗ F p ) , acts on changing bundles, and dim F p → ∞ . Sense of convergence? 16/21

  17. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Sommaire Introduction 1 Definition 2 Statement of the result 3 Tœplitz operators 4 Asymptotic heat kernel 5 17/21

  18. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel For m ∈ M , we denote Y m simply by Y . P p orthogonal proj. L 2 ( Y , L p ) → H 0 ( Y , L p ) = F p . Définition A Tœplitz operator on Y is a family of operators T p ∈ End ( L 2 ( Y , L p )) satisfying: 1 ∀ p ∈ N , we have T p = P p T p P p , thus T p ∈ End ( F p ) . 2 ∃ ϕ r ∈ C ∞ ( Y ) s.t. for k ∈ N , ∃ C k > 0 s.t. � � � � k � 1 1 � � � T p − � ≤ C k � p r P p ϕ r P p � p k + 1 , r = 0 where � · � is the operator norm on End ( L 2 ( Y , L p )) . “Elementary” Tœplitz operators of the form P p ϕ P p play the role of the limits: u p → ϕ ← → � u p − P p ϕ P p � → 0. 18/21

  19. Introduction Definition Statement of the result Tœplitz operators Asymptotic heat kernel Sommaire Introduction 1 Definition 2 Statement of the result 3 Tœplitz operators 4 Asymptotic heat kernel 5 19/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend