the assignment flow
play

The Assignment Flow Christoph Schnrr Ruben Hhnerbein, Stefania - PowerPoint PPT Presentation

The Assignment Flow Christoph Schnrr Ruben Hhnerbein, Stefania Petra, Fabrizio Savarino, Alexander Zeilmann, Artjom Zern, Matthias Zisler Image & Pattern Analysis Group Heidelberg University Mathematics of Imaging: W1


  1. The Assignment Flow Christoph Schnörr Ruben Hühnerbein, Stefania Petra, Fabrizio Savarino, 
 Alexander Zeilmann, Artjom Zern, Matthias Zisler 
 Image & Pattern Analysis Group 
 Heidelberg University Mathematics of Imaging: W1 
 Feb 4-8, Paris

  2. Machine learning and … • signal & image proc. • computer vision • math. imaging • inverse problems • statistics • …

  3. Machine learning and … • signal & image proc. • computer vision • math. imaging predictive accuracy deep networks • inverse problems • statistics • … debugging heat maps … descriptive accuracy

  4. Machine learning and … “interpretable ML !” “explainable AI !” predictive accuracy deep networks debugging heat maps … descriptive accuracy

  5. Machine learning and … predictive accuracy deep networks Geman & Geman (T-PAMI 1984) … Kappes et al. (IJCV 2015) graphical models descriptive accuracy

  6. Machine learning and … predictive accuracy deep networks graphical models descriptive accuracy

  7. Machine learning and … predictive accuracy deep networks • smoothness • hierarchical structure • math. framework assignment flow graphical models descriptive accuracy

  8. Machine learning and … predictive accuracy deep networks • smoothness • hierarchical structure • math. framework assignment flow graphical models descriptive accuracy

  9. Outline • set-up: assignment flow 
 JMIV’17 supervised labeling SIIMS’18 • unsupervised labeling 
 - label evolution 
 - label learning from scratch • parameter estimation (control) • outlook

  10. Set-up: assignment flow & supervised labeling � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) ∈ X ∈ W � � W i = Pr( g 1 | f i ) , . . . , Pr( g m | f i ) g m assignment 
 g 3 vector labels 
 (prototypes) V f i feature Fisher-Rao g 2 metric g 1 on S W i g 1 g 2 � features 
 f i ∈ ( X , d ) metric space

  11. Set-up: assignment flow & supervised labeling � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) � 1 ⇣ �⌘ ˙ � � � W i = Π W i L i ( W i ) = Π W i exp W i ρ D i g m g 3 likelihood 
 labels 
 vector (prototypes) V f i feature Fisher-Rao g 2 metric g 1 on S W i g 1 g 2 � features 
 f i ∈ ( X , d ) metric space

  12. Set-up: assignment flow & supervised labeling � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) ⇣ X ⌘ w ik Exp � 1 G w i ( W ) = Exp W i W i ( W k ) g m k 2 N i g 3 S i ( W ) = G w � � regularisation L ( W ) , i labels 
 (prototypes) V control f i feature similarity 
 parameters vector g 2 g 1 W i g 1 g 2 � features 
 f i ∈ ( X , d ) metric space scale

  13. Set-up: assignment flow & supervised labeling � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) ∈ assignment 
 ˙ � � W (0) = 1 W . W = Π W S ( W ) , , W flow g m assignment 
 W ( t ) 2 ( W , g F R ) labels 
 manifold (prototypes) V f i feature W = S ⇥ · · · ⇥ S g 2 g 1 � features 
 f i ∈ ( X , d ) metric space scale

  14. Illustration scale ρ

  15. Illustration local 5 x 5 3 x 3

  16. Assignment flow: geometric integration ODEs on manifolds, Lie group methods ( Iserles et al.’05, Hairer et al. ’06) ( λ ∗ v ) p = d λ ( v, p ) = Λ (exp G ( v ) , p ) � d t Λ (exp G ( tv ) , p ) � t =0 λ ∗ X ( M ) g � � y = ˙ λ ∗ f ( t, y ) y , y y (0) = p. , f exp G exp M G λ M � � y ( t ) = λ v ( t ) , p Λ v = (dexp − 1 � � ˙ G ) v f ( t, λ ( v, p )) , v (0) = 0 , v , Λ : G ⇥ M ! M

  17. Assignment flow: geometric integration � � W ( t ) = exp W 0 V ( t ) any W 0 = W (0) nonlinear assignment flow ˙ � � V = Π T 0 S exp W 0 ( V ) , V V (0) = 0 . , (Zeilmann et al, arXiv’18) linear assignment flow geometric RKMK implicit geometric Euler exponential integrator adaptive RK embedded RKMK numerical experiments

  18. 
 
 Properties (more general viewpoint) • elementary state space statistical manifold ( W , g ) e ( g, r , r ∗ ) • information geometry 
 dualistic structure 
 r (Amari & Chentsov) Zg ( X, Y ) = g ( r Z X, Y ) + g ( X, r ∗ Z Y ) , • scale small / cooperative & large / competitive • distances adaptive distances D D D ( W ) , W 2 W D

  19. Outline • set-up: assignment flow 
 supervised labeling • unsupervised labeling 
 (Zern et al., GCPR’18) - label evolution 
 (submitted) - label learning from scratch • parameter estimation (control) • outlook

  20. Label evolution � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) preprocessing labels adapt online ! g j g j f i data (feature) 
 manifold M data f i

  21. time scale Label evolution divergence measure label flow ( “m” : label as Riemannian means) X X � � � � g − 1 � � � � m j ( t ) = � α ˙ M ( t ) b b d j D ( f i , m j ( t )) m j (0) = m j 0 , α > 0 ν j | i , i ∈ I ∈ W ij e − 1 σ D ( f i ,m j ) ij ( W i ; M ) L σ P ν j | i ( M ) = ij ( W i ; M ) = σ > 0 kj ( W k ; M ) , L σ σ D ( f i ,m l ) , P l ∈ J W il e − 1 k ∈ I L σ � � coupling P spatial regularisation assignment flow ∈ � � �� ˙ , i ∈ I, W i ( t ) = Π W i ( t ) W ( t ) W i (0) = 1 S , S i , i

  22. Label evolution SO(3)-valued data

  23. Label evolution supervised: 200 labels Euclidean color space unsupervised: few labels

  24. Label evolution supervised: 200 labels positive-def. manifold (dim = 120) Z ⇥ ⇤ P d 3 F i = h ( x i � y ) ( f � E i [ f ]) ⌦ ( f � E i [ f ]) ( y ) d y 1

  25. Label evolution supervised: 200 labels few labels few labels

  26. Outline • set-up: assignment flow 
 supervised labeling • unsupervised labeling 
 (Zern et al., GCPR’18) - label evolution 
 (submitted) - label learning from scratch • parameter estimation (control) • outlook

  27. Label learning from scratch � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) ∈ X ∈ W ? � � D = d ( f i , f k ) i,k 2 I . � � W i = Pr( g 1 | f i ) , . . . , Pr( g m | f i ) ? each datum is a label

  28. Label learning from scratch � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) ∈ X ∈ W ? � � D = d ( f i , f k ) i,k 2 I . � � W i = Pr( g 1 | f i ) , . . . , Pr( g m | f i ) ? each datum is a label 2 W P ( f k | f i ) P ( f i ) P ( f k ) = 1 Q ( f i | f k ) = l 2 I P ( f k | f l ) P ( f l ) , , P | I | , k 2 I P marginalize over “data labels’’ self-a ffi nity matrix P | | | 2 X WC ( W ) � 1 W > � � A ji ( W ) = Q ( f j | f k ) P ( f k | f i ) = ji k 2 I symmetric, non-negative, doubly stochastic parametrised by assigments

  29. Label learning from scratch objective: spatially regularised data self-assignment (generalizes ) h D, W i W 2 W E ( W ) , min E ( W ) = h D, A ( W ) i , E

  30. Label learning from scratch objective: spatially regularised data self-assignment (generalizes ) h D, W i W 2 W E ( W ) , min E ( W ) = h D, A ( W ) i , E approach: redefine the likelihood vectors � 1 � � L ( W ) = exp W ρ r E ( W ) 2 W , L unsupervised � � self-assignment flow ˙ W = Π W S ( t ) single parameter: scale

  31. Label learning from scratch objective: spatially regularised data self-assignment (generalizes ) h D, W i W 2 W E ( W ) , min E ( W ) = h D, A ( W ) i , E approach: redefine the likelihood vectors � 1 � � L ( W ) = exp W ρ r E ( W ) 2 W , L unsupervised � � self-assignment flow ˙ W = Π W S ( t ) single parameter: scale result: spatially regularised discrete optimal transport approaches a low-rank manifold D, A ( W ) , g k labels and their number emerge from data as latent variables , g k f i

  32. Unsupervised self-assignment flow S 1 - valued data

  33. Outline • set-up: assignment flow 
 supervised labeling • unsupervised labeling 
 - label evolution 
 - label learning from scratch • parameter estimation (control) (submitted) • outlook

  34. Recall: regularisation & control parameters � � D i = d ( f i , g 1 ) , . . . , d ( f i , g m ) metric, distance vector ( data term ) ⇣ X ⌘ w ik Exp � 1 G w i ( W ) = Exp W i W i ( W k ) g m k 2 N i g 3 S i ( W ) = G w � � regularisation L ( W ) , i labels 
 (prototypes) V control f i feature similarity 
 parameters vector g 2 g 1 W i g 1 g 2 � features 
 f i ∈ ( X , d ) metric space scale

  35. � � Motivation all patch-weights (= weight manifold) Ω = { w ik : k 2 N i , i 2 I } 2 P � � uniform weights predicted weights after learning

  36. � � Approach all patch-weights Ω = { w ik : k 2 N i , i 2 I } 2 P � � linear linear assignment flow { 2 N 2 } � � ˙ � � W ( t ) = Exp W 0 V ( t ) , V = Π W 0 S ( W 0 ) + dS W 0 V , V (0) = 0 , ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend