the 7th international symposium on data assimilation
play

The 7th International Symposium on Data Assimilation (ISDA2019) - PowerPoint PPT Presentation

The 7th International Symposium on Data Assimilation (ISDA2019) Efficient Implementations of Ensemble Based Methods In Sequential Data Assimilation: Accounting for Localization Elias D. Ni no-Ruiz Applied Math and Computer Science Laboratory


  1. The 7th International Symposium on Data Assimilation (ISDA2019) Efficient Implementations of Ensemble Based Methods In Sequential Data Assimilation: Accounting for Localization Elias D. Ni˜ no-Ruiz Applied Math and Computer Science Laboratory (AML-CS) Department of Computer Science Universidad del Norte BAQ 080001, Colombia E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  2. Outline I Data Assimilation Components Ensemble Based Methods The Stochastic Ensemble Kalman Filter Localization Methods Precision Matrix Localization Efficient EnKF-MC Shrinkage Covariance Matrix Estimation Ensemble Kalman filter based on RBLW Efficient Implementation of the RBLW EnKF-RBLW EnKF-MC and EnKF-RBLW with the SPEEDY Model Accuracy of the EnKF-MC Local Estimation of B − 1 Accuracy of the EnKF-RBLW Parallel Implementations of Ensemble Based Methods Recent References References E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  3. Components in DA [BS12] I � 10 8 � ◮ We want to estimate x ∗ ∈ ❘ n × 1 . n ∼ O . ◮ Imperfect numerical model: x next = M t current → t next ( x current ) , where x ∈ ❘ n × 1 . ◮ Noisy observations: y = H ( x ) + ǫ ∈ ❘ m × 1 , � 10 6 � where H : ❘ n → ❘ m and ǫ ∼ N ( 0 m , R ). m ∼ O . ◮ Prior estimate x b ∈ ❘ n × 1 with errors following N ( 0 , B ). E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  4. Components in DA [BS12] II 0.5 0.6 20 20 0.7 40 0.8 40 0.9 60 60 1 1.1 80 80 1.2 100 100 1.3 1.4 120 120 1.5 20 40 60 80 100 120 2000 4000 6000 8000 10000 12000 14000 16000 20 40 60 80 100 120 (c) y = H · x ∗ + ǫ (a) x ∗ (b) H 20 40 60 80 100 120 20 40 60 80 100 120 (d) x b E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  5. Components in DA [BS12] III ◮ By Bayes’ Theorem we know that: P ( x | y ) ∝ P ( x ) · L ( x | y ) where � � � � x − x b � − 1 2 � � P ( x ) ∝ exp 2 · � B − 1 � � − 1 2 · � y − H · x � 2 L ( x | y ) ∝ exp R − 1 and therefore, x a = arg max P ( x | y ) , x E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  6. Components in DA [BS12] IV ◮ It can be easily shown that: � � x b + A · H T · R − 1 · d = A · B − 1 · x b + H T · R − 1 · y x a = � R + H · B · H T � − 1 x b + B · H T · · d = � � − 1 ∈ ❘ n × n , and B − 1 + H T · R − 1 · H where A = d = y − H · x b ∈ ❘ m × 1 . ◮ Posterior distribution: x ∼ N ( x a , A ) . ◮ How do we estimate x b and B ?. E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  7. Ensemble Based Methods ◮ We can make use of an ensemble of model realizations: � x b [1] , x b [2] , . . . , x b [ N ] � X b = ∈ ❘ n × N ◮ Empirical moments of the ensemble: 1 x b ≈ x b N · X b · 1 N ∈ ❘ n × n , = 1 N − 1 · δ X · δ X T , B ≈ P b = and δ X = X b − x b · 1 T N ∈ ❘ n × N . E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  8. The Lorenz 96 Model - Toy Model I ◮ The Lorenz 96 model:   ( x 2 − x n − 1 ) · x n − x 1 + F for i = 1 ,  dx j dt = ( x i +1 − x i − 2 ) · x i − 1 − x i + F for 2 ≤ i ≤ n − 1 , (1)   ( x 1 − x n − 2 ) · x n − 1 − x n + F for i = n , where x i stands for the i -th model component, for 1 ≤ i ≤ n , usually n = 40. ◮ Each model component stands for a particle which fluctuates in the atmosphere. ◮ Exhibits chaotic behaviour when the external force F is set to 8. E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  9. The Lorenz 96 Model - Toy Model II 15 15 15 10 10 10 5 5 5 0 0 0 -5 -5 -5 -10 -10 -10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 (e) x 5 (f) x 10 (g) x 20 15 15 15 10 10 10 5 5 5 0 0 0 -5 -5 -5 -10 -10 -10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 (h) x 30 (i) x 35 (j) x 40 E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  10. Estimation of B via N = 10 5 . 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 (a) Structure (b) Surf Figure: Estimation of B via N = 10 5 . E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  11. The Stochastic Ensemble Kalman Filter [Eve03, Eve06] I ◮ Sequential Monte Carlo method for parameter and state estimation. ◮ Analysis ensemble (posterior ensemble): � � X b + P b · H T · R + H · P b · H X a · ∆Y = X b + P a · H T · R − 1 · ∆Y ∈ ❘ n × N , X a = � � � P b � − 1 P a · H T · R − 1 · Y s + X a · X b ∈ ❘ n × N , = � P b � − 1 � − 1 � H T · R − 1 · H + where P a = ∈ ❘ n × n , and the e -th column of ∆Y ∈ ❘ m × N and Y s ∈ ❘ n × N are: � x b [ e ] � d [ e ] = y + ǫ [ e ] − H ∈ ❘ m × 1 , and y s [ e ] = y + ǫ [ e ] , respectively, for 1 ≤ e ≤ N , and ǫ [ e ] ∼ N ( 0 m , R ). E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  12. L − 2 Error Norms in Time, N = 10 5 2 1.5 1 1 0 0.5 -1 0 -0.5 -2 0 5 10 15 0 5 10 15 (a) p = 50% (b) p = 100% Figure: L − 2 error norms in time, N = 10 5 . But too many samples!!! In practice, model realizations are constrained by the hundreds... E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  13. L − 2 error norms in time, N = 10 1.5 1.5 1.48 1.46 1.45 1.44 1.4 1.42 1.4 1.38 1.35 0 5 10 15 0 5 10 15 (a) p = 50% (b) p = 100% Figure: L − 2 error norms in time, N = 10. What is going on here? ... E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  14. Estimation of B via N = 10 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 (a) Structure (b) Surf Figure: Estimation of B via N = 10. What can we do? Localization methods... E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  15. Localization Methods ◮ Avoid the impact of spurious correlations. ◮ Increase the rank of P b . ◮ Three different flavors: 1. Covariance Matrix Localization. (Precision Localization) [NRSD15, NRSD17, NR17, NRSD18]. 2. Spatial Domain Localization [OHS + 04]. 3. Observation Localization [AND07, AND09]. E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  16. Precision Matrix Localization I ◮ Component-wise products are prohibitive in high-dimensional spaces. ◮ When two model components are conditional independent, their corresponding entry in the precision covariance matrix is zero . (a) r = 0 (b) r = 1 (c) r = 3 E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  17. Precision Matrix Localization II ◮ Modified Cholesky Decomposition [BL + 08]: B − 1 = T T · D − 1 · T � where the non-zero elements from T ∈ ❘ n × n are given by fitting models of the form: � x [ i ] = x [ q ] · {− T } i , q + ǫ [ i ] ∈ ❘ N × 1 , for 1 ≤ i ≤ n , q ∈ P ( i , r ) � ǫ [ i ] � and { D } i , i = var . (a) N (6 , 1) (b) P (6 , 1) E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  18. Precision Matrix Localization III ◮ An estimate: 0 0 5 5 10 10 15 15 20 20 25 25 30 30 35 35 40 40 0 10 20 30 40 0 10 20 30 40 nz = 160 nz = 40 (a) P b (b) T (c) D 0 5 10 15 20 25 30 35 40 0 10 20 30 40 nz = 298 B − 1 Str (d) � (e) � B − 1 (f) � B Results: E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  19. Precision Matrix Localization IV 2 2 2 1 1 1 0 0 0 -1 -1 -1 -2 -2 -2 0 5 10 15 0 5 10 15 0 5 10 15 (a) N = 30, r = 1, (b) N = 30, r = 3, (c) N = 30, r = 5, p = 100% p = 100% p = 100% 1.4 1.5 1.4 1.2 1 1.2 1 0.5 0.8 1 0 0.6 0.8 -0.5 0.4 0.2 -1 0.6 0 5 10 15 0 5 10 15 0 5 10 15 (d) N = 30, r = 1, (e) N = 30, r = 3, (f) N = 30, r = 5, p = 50% p = 50% p = 50% E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  20. Efficient EnKF-MC I Consider � � − 1 X b + B − 1 + H T · R − 1 / 2 · R − 1 / 2 · H · H T · R − 1 · ∆Y � X a = � B − 1 + Z · Z T � − 1 · H T · R − 1 · ∆Y X b + � =   − 1 � z [ j ] � T m � X b + B − 1 + z [ j ] · · H T · R − 1 · ∆Y , �  = j =1 z [ j ] ∈ ❘ n × 1 is the j -th column of Z = H T · R − 1 / 2 ∈ ❘ n × m . E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  21. Efficient EnKF-MC II � T (0) � T � T (0) � · D (0) · = T T · D · T = � B − 1 , A (0) = � z [1] � T � T (1) � T � T (1) � A (0) + z [1] · · D (1) · A (1) = = , � z [2] � T � T (2) � T � T (2) � A (1) + z [2] · · D (2) · A (2) = = , . . . � z [ m ] � T A ( m − 1) + z [ m ] · A ( m ) = � T ( m ) � T � T ( m ) � · D ( m ) · T T · � T = A − 1 , = � D · � = E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

  22. Efficient EnKF-MC III at any intermediate step j , for 1 ≤ j ≤ m , we have, � T ( j − 1) � T � T ( j − 1) � � z [ j ] � T · D ( j − 1) · + z [ j ] · A ( j ) = � p ( j ) � T � � T ( j − 1) � T � � T ( j − 1) � D ( j − 1) + p ( j ) · · · = , � T ( j − 1) � T · p ( j ) = z [ j ] ∈ ❘ n × 1 . By computing the Cholesky where decomposition of, � p ( j ) � T � T ( j − 1) � T � T ( j − 1) � D ( j − 1) + p ( j ) · · D ( j ) · � � = , therefore, � T ( j − 1) · T ( j − 1) � T � T ( j − 1) · T ( j − 1) � · D ( j ) · � � A ( j ) = � T ( j ) � T � T ( j ) � · D ( j ) · = , E. Ni˜ no-Ruiz, ISDA2019 - RIKEN R-CCS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend