t violating observables in neutron decay
play

T-violating observables in neutron decay experimental opportunities - PowerPoint PPT Presentation

Theoretical issues and experimental opportunities in searches for time reversal invariance violation using neutrons , Dec. 6-8, 2018, Amherst MA T-violating observables in neutron decay experimental opportunities Kazimierz Bodek


  1. „ Theoretical issues and experimental opportunities in searches for time reversal invariance violation using neutrons ” , Dec. 6-8, 2018, Amherst MA T-violating observables in neutron decay – experimental opportunities Kazimierz Bodek Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

  2. 2 07.12.2018 T-violating observables in neutron decay – experimental opportunities Outline  T-odd correlations in neutron  -decay  D- and R-correlations  Experiments in the past: emit, Trine and nTRV  emit+Trine+nTRV together (?)  BRAND  Potential benefits of BRAND  T-odd correlation in radiative neutron decay  Challenges and strategy  Conclusions

  3. 3 07.12.2018 T-violating observables in neutron decay – experimental opportunities TRV tests  True TRV tests require (i) reversal of motion and (ii) exchange of initial and final states t  -t (a) (b) Initial Final Initial Final Scattering, binary reaction: 3 1 1 3 2 4 4 2  In particle decay exchange of initial and final states is impossible Particle decay: 3 3 1 1 4 4  (a) ≠  (b)  If interaction violates TR symmetry:

  4. 4 07.12.2018 T-violating observables in neutron decay – experimental opportunities D - and R -correlations  In ordinary neutron decay, two observables are particularly interesting R  < J >/ J  ( p e  ) D  < J >/ J  ( p e  p  ) R D  D -correlation (C-odd, P-even, T-odd)        J d p p m p p p p   1           D     e e e e S E a b A B D   e   dE d d E E E J E E E E       e e e e e e  R -correlation (C-even, P-odd, T-odd)         σ p p σ p σ J J d m p p   1          σ R   e e e  e e e  S E b A G Q N R   e   dE d  E J E E J E E m E  e e e e e e e e e       σ J d m p p   1         σ R σ p   e  e e  S E b A N R ;    e e   dE d E J E E   e e e e e

  5. 5 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation J.D. Jackson et al., Phys. Rev. 106, 517 (1957); J.D. Jackson et al., Nucl. Phys. 4, 206 (1957); M.E. Ebel et al., Nucl. Phys. 4, 213 (1957)    For left-handed V-A interactions ( ), defining C C ' , C C ' V V A V  = C A / C V , neglecting terms quadratic in C S and C T , point charge, no recoil:       5 1.2 10 D D D D FSI T T        * * *   Im C C Im C C C ' C ' 1   V A  S T S T   D 2 T   2 2 2   1 3 C C   V V      * * ' m 1 C C ' C C     * *  T T S S  Re   2 *   p C C 1 3 e A V       1 C C ' C C '             * * S S T T D 2sin Im S T S T ; S , T T AV   2 C C 1 3 V A   VA D 0.435 sin AV T

  6. 6 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation, emit-II  emiT-II (NIST):  NG6 cold neutron beam Longitudinally polarized (~0.95) in the fiducial volume  Compact, symmetric setup with azimuthally alternating  electron- and proton-detectors Proton detectors segmented (4x4 cm 2 ) SBD, accelerating  potential ~25 kV

  7. 7 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation, emit-II  Acquired information  e-p coincidences, ToF Electron energy  (Accelerated) proton energy   Isolation of D using: Symmetry of detectors  Periodic neutron spin flip 

  8. 8 07.12.2018 T-violating observables in neutron decay – experimental opportunities

  9. 9 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation, emit-II  Result (68% C.L.) T. E. Chupp, R. L. Cooper, K. P. Coulter, S. J. Freedman, B. K. Fujikawa, A. Garcia, G. L. Jones, H. P. Mumm, J. S. Nico, A. K. Thompson, C. A. Trull, F. E. Wietfeldt, and J. F. Wilkerson, Phys. Rev. C 86 , 035505 (2012)

  10. 10 07.12.2018 T-violating observables in neutron decay – experimental opportunities curtesy of H.P. Mumm (  10 -4 ) Most of systematic effects were MC modelled

  11. 11 07.12.2018 T-violating observables in neutron decay – experimental opportunities emiT-II+NGC

  12. 12 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation, emit-III+NGC

  13. 13 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation, Trine T. Soldner, L. Beck, C. Plonka, K. Schreckenbach, O. Zimmer, Phys. Lett. B 581 (2004) 49  Trine (ILL):  PF1 cold neutron beam Longitudinally polarized (~0.97) in the fiducial volume  Compact setup with planar geometry  Electron- and proton-detectors in perpendicular planes   Proton detectors PIN diodes on ground potential Accelerating potential: 25 kV  MWPC for gamma suppression and selection of angular ranges 

  14. 14 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation, Trine T. Soldner, L. Beck, C. Plonka, K. Schreckenbach, O. Zimmer, Phys. Lett. B 581 (2004) 49  Excellent S/B ratio of 23  Systematic effects and corrections

  15. 15 07.12.2018 T-violating observables in neutron decay – experimental opportunities D -correlation with ep/n + MagSpec ? e.g. G. Konrad et al., J. Phys.: Conf. Series 340 (2012) 012048  ep/n-spectrometers adiabatically coupled to n-decay channel (PERC, ANNI)  Conserve particle energy and angular (polar) distributions  Reconstruct p e  p p using decay kinematics (?) R  B NoMoS  No definite plans yet (B. Maerkisch, TUM) X. Wang, G. Konrad, H. Abele, NIMA (2012) 254

  16. 16 07.12.2018 T-violating observables in neutron decay – experimental opportunities R -correlation    For left-handed V-A interactions ( ), defining C C ' , C C ' V V A V  = C A / C V , neglecting terms quadratic in C S and C T , point charge, no recoil:  m         4 9 10 R R R R A R FSI SM T T T p     e       * * * * * *   Im C C C ' C ' Im C C C ' C C C ' C C 1  T A T A  S A S A V T V T   R 4 2 T   2 2 2   1 3 C C   V V  m 1          Re 2 1 R   FSI   2 p 1 3 e            1 2   C C ' C C '         S S T T R Im S Im T ; S , T T   2   2 C C 1 3 1 3 V A          R 0.218 Im S 0.335 Im T T

  17. 17 07.12.2018 T-violating observables in neutron decay – experimental opportunities N -correlation J n P p N  N is C-even, P-even and T-even  e R p e p  m         2 N N N N A N 7.9 10 T SM T SM T E e m 1          N Re 2 1   SM   2 E 1 3 e            1 2   C C ' ' C C         S S T T N Re S Re T ; S , T T   2   2 C C 1 3 1 3 V A          N 0.218Re S 0.335Re T T

  18. 18 07.12.2018 T-violating observables in neutron decay – experimental opportunities Electron spin analysis  Mott scattering:  Analyzing power caused by spin-orbit force  Parity and time reversal conserving (electromagnetic process)  Sensitive exclusively to the transverse polarization

  19. 19 07.12.2018 T-violating observables in neutron decay – experimental opportunities nTRV@PSI – Mott polarimeter  Challenges:  Weak and diffuse decay source  Electron depolarization in multiple Coulomb scattering  Low energy electrons (<783 keV)  High background (n-capture) Pb-foil Pb-foil  Solutions:  Tracking of electrons in low- 50 cm mass, low- Z MWPCs  Identification of Mott- scattering vertex (“V - track”)  Frequent neutron spin flipping  “foil - in” and “foil - out” scintillator MWPC scintillator measurements

  20. 20 07.12.2018 T-violating observables in neutron decay – experimental opportunities Limits on S and T contributions A. Kozela, G. Ban, A. Bialek, K. Bodek, P. Gorel, K. Kirch, St. Kistryn, O. Naviliat-Cuncic, N. Severijns, E. Stephan, and J. Zejma, Phys. Rev. C 85, 045501 (2012).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend