t he permutation model g n 2 d
play

T HE PERMUTATION MODEL G ( n , 2 d ) 1 , . . . , d iid uniform - PowerPoint PPT Presentation

E IGENVALUES OF SPARSE RANDOM REGULAR GRAPHS Soumik Pal University of Washington Seattle Seminar on Stochastic Processes, 2012 G RAPHS AND ADJACENCY MATRICES 3 2 Undirected graphs on n labeled vertices. 4 1 Regular: degree d . 5 6


  1. E IGENVALUES OF SPARSE RANDOM REGULAR GRAPHS Soumik Pal University of Washington Seattle Seminar on Stochastic Processes, 2012

  2. G RAPHS AND ADJACENCY MATRICES 3 2 Undirected graphs on n labeled vertices. 4 1 Regular: degree d . 5 6 Adjacency matrix = n × n 0 1 0 0 1 1   symmetric matrix. 1 0 0 1 1 0   0 0 0 1 1 1     Sparse - d ≪ n . 0 1 1 0 0 1     1 1 1 0 0 0   1 0 1 1 0 0

  3. M ODELS OF RANDOM REGULAR GRAPHS The permutation model: G ( n , 2 ) . π - random permutation on [ n ] . 2-regular graph: 3 9 4 8 2 1 7 10 6 5

  4. T HE PERMUTATION MODEL G ( n , 2 d ) π 1 , . . . , π d iid uniform permutations. Superimpose.

  5. T HE PERMUTATION MODEL G ( n , 2 d ) π 1 , . . . , π d iid uniform permutations. Superimpose. 4 3 π 1 = 5 2 π 2 = 1

  6. T HE PERMUTATION MODEL G ( n , 2 d ) π 1 , . . . , π d iid uniform permutations. Superimpose. 4 3 π 1 = ( 1 3 2 )( 4 5 ) 5 2 π 2 = 1

  7. T HE PERMUTATION MODEL G ( n , 2 d ) π 1 , . . . , π d iid uniform permutations. Superimpose. 4 3 π 1 = ( 1 3 2 )( 4 5 ) 5 2 π 2 = ( 1 4 2 ) 1

  8. T HE PERMUTATION MODEL G ( n , 2 d ) π 1 , . . . , π d iid uniform permutations. Superimpose. 4 3 π 1 = ( 1 3 2 )( 4 5 ) 5 2 π 2 = ( 1 4 2 ) 1 Multiple edges, loops OK.

  9. SPECTRAL GRAPH THEORY Eigenvalues of the adjacency matrix. Why care? Test RMT universality: McKay ’81, Dumitriu-P . ’10, Tran-Vu-Wang’10 Ben Arous-Dang ’11, Erdos-Knowles-Yau ’11 Expansion properties: Broder-Shamir ’87, Friedman ’91, ’08 Quantum chaos: Smilansky ’10, Elon-Smilansky ’10 Simulations: Jacobson et al. ’99, Miller et al. ’08. and many more . . .

  10. R ANDOM M ATRIX T HEORY A Wigner matrix is a square random matrix with

  11. R ANDOM M ATRIX T HEORY A Wigner matrix is a square   random matrix with − 0 . 6 0 . 7 0 . 1 0 . 6   upper triangular entries 2 . 1 2 . 5 − 0 . 1     chosen independently; − 2 . 2 1 . 1     − 0 . 6   A sample of a 4 × 4 Wigner matrix.

  12. R ANDOM M ATRIX T HEORY A Wigner matrix is a square   random matrix with − 0 . 6 0 . 7 0 . 1 0 . 6   upper triangular entries 0 . 7 2 . 1 2 . 5 − 0 . 1     chosen independently; 0 . 1 2 . 5 − 2 . 2 1 . 1     symmetric. 0 . 6 − 0 . 1 1 . 1 − 0 . 6   A sample of a 4 × 4 Wigner matrix.

  13. R ANDOM M ATRIX T HEORY A Wigner matrix is a square   random matrix with − 0 . 6 0 . 7 0 . 1 0 . 6   upper triangular entries 0 . 7 2 . 1 2 . 5 − 0 . 1     chosen independently; 0 . 1 2 . 5 − 2 . 2 1 . 1     symmetric. 0 . 6 − 0 . 1 1 . 1 − 0 . 6   Minor=principal submatrix, also Wigner. A sample of a 4 × 4 Wigner matrix.

  14. E IGENVALUE FLUCTUATIONS W ∞ - Wigner array. W n - n × n minor. E-values { λ n i } . Linear eigenvalue statistics � λ n n � � i tr f ( W n ) := 2 √ n . f i = 1 (Classical Theorem) If f is analytic 0 , σ 2 � � n →∞ [ tr f ( W n ) − E tr f ( W n )] = N lim . f

  15. E IGENVALUE FLUCTUATIONS W ∞ - Wigner array. W n - n × n minor. E-values { λ n i } . Linear eigenvalue statistics � λ n n � � i tr f ( W n ) := 2 √ n . f i = 1 (Classical Theorem) If f is analytic 0 , σ 2 � � n →∞ [ tr f ( W n ) − E tr f ( W n )] = N lim . f Eigenvalue repulsion.

  16. J OINT CONVERGENCE ACROSS MINORS Results by Borodin ’10. Choose 0 < t 1 ≤ t 2 ≤ . . . ≤ t k and f 1 , f 2 , . . . , f k . � � � � lim tr f i W ⌊ nt i ⌋ − E tr f i ( · ) , i ∈ [ k ] = Gaussian . n →∞ Mean zero. Covariance kernel?

  17. J OINT CONVERGENCE ACROSS MINORS Results by Borodin ’10. Choose 0 < t 1 ≤ t 2 ≤ . . . ≤ t k and f 1 , f 2 , . . . , f k . � � � � lim tr f i W ⌊ nt i ⌋ − E tr f i ( · ) , i ∈ [ k ] = Gaussian . n →∞ Mean zero. Covariance kernel? ‘Limiting fluctuation of the Height Function is the Gaussian Free Field.’

  18. C HEBYSHEV POLYNOMIALS - FIRST KIND 1.0 T n ( x ) , n ≥ 0 - Poly of degree n . 0.5 Orthogonal polynomials on [ − 1 , 1 ] . � 1.0 � 0.5 0.5 1.0 Weight measure: Arc-Sine law. � 0.5 Fourier expansion: f = � n c n T n . � 1.0 F IGURE : T 1 , T 3 , T 8

  19. C HEBYSHEV POLYNOMIALS - FIRST KIND 1.0 T n ( x ) , n ≥ 0 - Poly of degree n . 0.5 Orthogonal polynomials on [ − 1 , 1 ] . � 1.0 � 0.5 0.5 1.0 Weight measure: Arc-Sine law. � 0.5 Fourier expansion: f = � n c n T n . � 1.0 F IGURE : T 1 , T 3 , T 8 (Borodin ’10) Fix s ≤ t and i , j ∈ N . j � s � j / 2 � � � � �� n →∞ Cov lim tr T i W ⌊ nt ⌋ , tr T j W ⌊ ns ⌋ = δ ij . 2 t

  20. Main Results - (with Toby Johnson ’12)

  21. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )

  22. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 )

  23. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 3 )

  24. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 )

  25. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 )( 5 )

  26. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 )( 5 )( 6 )

  27. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 )( 5 7 )( 6 )

  28. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 )( 5 8 7 )( 6 )

  29. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 9 )( 5 8 7 )( 6 )

  30. C HINESE R ESTAURANT P ROCESS (Dubins-Pitman) Randomly grows a permutation. Every point adds neighbor to left at rate one. New fixed points at rate one. σ = ( 1 )( 2 4 3 9 )( 5 10 8 7 )( 6 )

  31. C YCLES AND EIGENVALUES Case of G ( n , 2 ) . Adjacency matrix - blocks of cycles. E-values of cycle of size k : � � 2 π j � � cos , j ∈ [ k ] . k

  32. C YCLES AND EIGENVALUES Case of G ( n , 2 ) . Adjacency matrix - blocks of cycles. E-values of cycle of size k : � � 2 π j � � cos , j ∈ [ k ] . k Under the CRP: Cycle of size k − → size ( k + 1 ) at rate k . New cycle size 1 at rate 1 . Stochastic process of eigenvalues. Kerov-Olshanki-Vershik ’93 Olshanki-Vershik ’96, Bourgade-Najnudel-Nikeghbali ’11

  33. T HE CASE OF GENERAL G ( n , 2 d ) Simultaneous insertion in ( π 1 , π 2 , . . . , π d ) by CRP . Let T i = Exp( i ), i ∈ N , � m � � n t = max m : T i ≤ t . i = 1 G ( t ) := G ( n t , 2 d ) . No cyclic decomposition.

  34. G ROWTH OF A CYCLE (Johnson-P . ’12) Existing cycles grow in size. 4 π 2 3 4 π 2 3 π 1 6 π 1 π 1 π 1 π 1 5 2 5 2 π 2 π 1 π 2 π 1 1 1 π 1 = ( 1 2 3 )( 4 5 ) π 1 = ( 1 2 6 3 )( 4 5 ) π 2 = ( 1 5 )( 4 3 )( 2 ) π 2 = ( 1 5 )( 4 3 )( 2 6 ) F IGURE : Vertex 6 is inserted between 2 and 3 in π 1 .

  35. B IRTH OF A CYCLE 6 π 1 π 2 π 2 π 1 π 2 π 1 π 2 π 3 π 2 π 1 1 2 3 4 5 1 2 3 4 5 π 1 = ( 2 3 1 )( 4 5 ) π 1 = ( 2 3 1 6 )( 4 5 ) π 2 = ( 2 1 3 4 5 ) π 2 = ( 2 1 3 4 6 5 ) F IGURE : A cycle forms “spontaneously”.

  36. C YCLE COUNTS C ( s ) k ( t ) = # k -cycles in G ( s + t ) . Non-Markovian process in t , with s fixed.

  37. C YCLE COUNTS C ( s ) k ( t ) = # k -cycles in G ( s + t ) . Non-Markovian process in t , with s fixed. ( C ( s ) k ( t ) , k ∈ N , −∞ < t < ∞ ) converges as s → ∞ . Limiting process ( N k ( t ) , k ∈ N , −∞ < t < ∞ ) is Markov. Running in stationarity.

  38. T HE LIMITING PROCESS (Johnson-P . ’12) In the limit: Existing k -cycles grows to ( k + 1 ) at rate k . New k -cycles created at rate µ ( k ) ⊗ Leb. Here: µ ( k ) = 1 2 [ a ( d , k ) − a ( d , k − 1 )] , k ∈ N , a ( d , 0 ) := 0 , where � ( 2 d − 1 ) k − 1 + 2 d , k even , a ( d , k ) = ( 2 d − 1 ) k + 1 , k odd .

  39. M ORE FORMALLY ... (Johnson-P . ’12) Poisson point process χ on N × ( −∞ , ∞ ) . Intensity µ ⊗ Leb. Yule process: Lf ( k ) = k ( f ( k + 1 ) − f ( k )) , k ∈ N .

  40. M ORE FORMALLY ... (Johnson-P . ’12) Poisson point process χ on N × ( −∞ , ∞ ) . Intensity µ ⊗ Leb. Yule process: Lf ( k ) = k ( f ( k + 1 ) − f ( k )) , k ∈ N . For ( k , y ) ∈ χ , start indep ( X k , y ( t ) , t ≥ 0 ) . Yule process from k .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend