systematic features of ccsn neutrinos
play

Systematic Features of CCSN neutrinos Ko Nakamura (Fukuoka Univ.) - PowerPoint PPT Presentation

Systematic Features of CCSN neutrinos Ko Nakamura (Fukuoka Univ.) T. Takiwaki (NAOJ) , S. Horiuchi (Virginia Tech.), M. Tanaka (Tohoku Univ.), K. Kotake (Fukuoka Univ.) International Symposium on Revealing the history of the universe with


  1. Systematic Features of CCSN neutrinos Ko Nakamura (Fukuoka Univ.) T. Takiwaki (NAOJ) , S. Horiuchi (Virginia Tech.), M. Tanaka (Tohoku Univ.), K. Kotake (Fukuoka Univ.) International Symposium on Revealing the history of the universe with underground particle and nuclear research @ Tohoku Univ. Mar. 7-9, 2019

  2. How to create a Core-collapse SN (CCSN) Final stage of a Supernova massive star H,He He C,O � Ne,Mg Si Fe Basic equations � Ø Neutrino from SN 1987A d ρ dt + ρ ∇ · v = 0 , ρ d v dt = −∇ P − ρ ∇ Φ , ∂ e ∗ ∂ t + ∇ · [( e ∗ + P ) v ] = − ρ v · ∇ Φ + Q E , dY e Energy and electron fraction change dt = Γ N , due to neutrino interactions. � EOS. △ Φ = 4 π G ρ ,

  3. Explosion mechanism of CCSN � • Core-collapse supernova – Final fate of massive stars � >~10Mo � – Unclear mechanism of explosion Shock � – Neutrino heating mechanism – Convection, SASI Entropy � R [km] Bounce and Shock Formation $ $ 2 o ) (t ~ 0.11s, < c % R Fe R Fe radius of Density � ! e shock PNS � formation Si ~ 10 ~ 10 ! e Fe, Ni ! e (Janka+’06) � M(r) [M ] 0.5 1.0 nuclear matter nuclei $ $ ( & ) > ex.) % Si − burning shell M = 17 Mo ν e + n → p + e - , ν e + p → n + e + , etc. � Z = Zo �

  4. Explosion mechanism of CCSN � • Core-collapse supernova – Final fate of massive stars � >~10Mo � – Unclear mechanism of explosion Convective – Neutrino heating mechanism motions � – Convection, SASI Entropy � R [km] Bounce and Shock Formation $ $ 2 o ) (t ~ 0.11s, < c % R R Fe Fe radius of Density � ! e shock Spherical inflow � formation Si ~ 10 ~ 10 ! e Fe, Ni ! e Mixing � (Janka+’06) � M(r) [M ] 0.5 1.0 nuclear matter nuclei $ $ ( & ) > ex.) % Si − burning shell M = 17 Mo ν e + n → p + e - , ν e + p → n + e + , etc. � Z = Zo �

  5. Explosion mechanism of CCSN � • Core-collapse supernova Development of SASI – Final fate of massive stars � >~10Mo � – Unclear mechanism of explosion – Neutrino heating mechanism – Convection, SASI Entropy � R [km] Bounce and Shock Formation $ $ 2 o ) (t ~ 0.11s, < c % R Fe R Fe radius of Density � ! e shock formation Si ~ 10 ~ 10 ! e Fe, Ni ! e (Janka+’06) � M(r) [M ] 0.5 1.0 nuclear matter nuclei $ $ ( & ) > ex.) % Si − burning shell M = 17 Mo ν e + n → p + e - , ν e + p → n + e + , etc. � Z = Zo �

  6. Explosion mechanism of CCSN � Neutrino transport from interior of PNS to outside of the shock • Core-collapse supernova Energy distribution – Final fate of massive stars � >~10Mo � to solve energy-dependent reactions � – Unclear mechanism of explosion – Neutrino heating mechanism – Convection, SASI Entropy � / 2D / R [km] Bounce and Shock Formation $ $ 2 o ) (t ~ 0.11s, < with appropriate resolution c % R R Fe Fe radius of Density � ! e shock formation Si ~ 10 ~ 10 ! e Fe, Ni ! e (Janka+’06) � M(r) [M ] 0.5 1.0 nuclear matter nuclei $ $ ( & ) > ex.) % Si − burning shell M = 17 Mo ν e + n → p + e - , ν e + p → n + e + , etc. � Z = Zo �

  7. Time evolution of neutrino luminosity ü Showing 101 models with solar metallicity. The other models with lower metallicity have a similar trend (not shown here). ü The difference of L ν is more than double . 2-6 � 10 52 erg/s @ t = 200 ms. ZAMS mass [ M ⊙ ] ZAMS mass [ M ⊙ ] 8 40.0 8 40.0 ν e ν e neutrino luminosity [10 52 erg/s] neutrino luminosity [10 52 erg/s] 6 6 30.0 30.0 4 4 20.0 20.0 2 2 � smoothed over Δt = 20 ms. 0 10.0 0 10.0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 time after bounce [s] time after bounce [s]

  8. Compactness parameter What determines the CCSN properties is ... (*Not too much) Mass accretion � mass accretion onto the PNS! →PNS mass � → n luminosity � →Explosion energy � * Too much accretion leads to BH formation and/or failed explosion. → 56 Ni mass � 3.0 Compactness parameter ξ 1.5,cb compactness parameter ξ M (O’Connor & Ott ’11) 3 × ξ 2.0 3 × ξ 2.5 M/ M ⊙ 2.0 ξ ≡ R ( M ) / 1000km 1.0 0.0 10 15 20 25 30 35 40 ZAMS mass [ M ⊙ ]

  9. Time evolution of neutrino luminosity ü Showing 101 models with solar metallicity. The other models with lower metallicity have a similar trend (not shown here). ü The difference of L ν is more than double . Compactness parameter 2-6 � 10 52 erg/s @ t = 200 ms. � O’Connor & Ott 2011 � M/M ⊙ ü The compactness-colored lines show a R ( M ) / 1000km . ξ M ≡ monotonic trend . ZAMS mass [ M ⊙ ] ZAMS mass [ M ⊙ ] 8 ξ 2.5 8 ξ 2.5 8 40.0 8 40.0 ν e ν e 0.4 0.4 neutrino luminosity [10 52 erg/s] neutrino luminosity [10 52 erg/s] neutrino luminosity [10 52 erg/s] neutrino luminosity [10 52 erg/s] 6 6 6 6 0.3 0.3 30.0 30.0 4 4 4 4 0.2 0.2 20.0 20.0 2 2 2 2 0.1 0.1 � smoothed over Δt = 20 ms. 0 10.0 0 10.0 0 0.0 0 0.0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 time after bounce [s] time after bounce [s] time after bounce [s] time after bounce [s]

  10. CCSN properties as a function of the compactness e-neutrino lumi. [10 52 erg/s] e-neutrino lumi. [10 52 erg/s] 2.2 2.2 4.5 4.5 remnant mass [ M ⊙ ] remnant mass [ M ⊙ ] 2.0 2.0 4.0 4.0 1.8 1.8 1.6 1.6 3.5 3.5 1.4 1.4 3.0 3.0 1.2 1.2 10 15 20 25 30 35 40 0.0 0.2 0.4 0.6 0.8 0.0 10 15 0.2 20 25 0.4 30 0.6 35 40 0.8 ZAMS mass [ M ⊙ ] compactness parameter ξ 2.0 compactness parameter ξ 2.0 ZAMS mass [ M ⊙ ] explosion energy [10 51 erg] explosion energy [10 51 erg] 0.8 0.8 6.0 6.0 nickel mass [10 -2 M ⊙ ] nickel mass [10 -2 M ⊙ ] 0.6 0.6 4.0 4.0 0.4 0.4 2.0 2.0 0.2 0.2 0.0 10 15 0.2 20 25 0.4 30 0.6 35 40 0.8 0.0 10 15 0.2 20 25 0.4 30 0.6 35 40 0.8 compactness parameter ξ 2.0 ZAMS mass [ M ⊙ ] compactness parameter ξ 2.0 ZAMS mass [ M ⊙ ]

  11. Compilation of CCSNe Simulations for 101 Solar-metallicity Progenitors @t=t 400 @t=t fin. dia. [10 51 erg s -1 ] 1.6 (a) (d) 0.3 ⑤ . s -1 ] ① High neutrino luminosity results in 1.2 Compact progenitor suffers from 0.2 [M o an energetic explosion. high mass accretion rate, 0.8 0.1 M . E 0.4 . 5.0 L ν e [10 52 erg s -1 ] 2.5 (b) (e) . ] ③ M PNS [M o ④ .. and leaves a massive remnants 4.0 Accreted matter releases grav. energy 2.0 at the center. which is carried away by neutrinos. 3.0 1.5 800 . ] 4.0 (c) (f) M Ni [10 -2 M o ⑥ ② t 400 [ms] 600 3.0 so that it takes longer time Strong shock heating produces 400 to revive a stalled shock ejecta rich in nickel. 2.0 200 1.0 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 KN+’15, PASJ compactness parameter ξ 2.5

  12. Neutrino signals & detectors ü Water-Cherenkov detector - Super Kamiokande (-Gd) - Hyper Kamiokande ü Reaction channels - inverse beta decay - electron scattering Gd-loaded SK can drastically suppress the background noise ( Beacom & Vagins '04 ). "Delayed coincidence"

  13. Neutrino signals & detectors ZAMS mass [ M ⊙ ] ü Water-Cherenkov detector 8 40.0 ν e - Super Kamiokande (-Gd) - Hyper Kamiokande neutrino luminosity [10 52 erg/s] 6 30.0 ü Reaction channels 4 - inverse beta decay - electron scattering 20.0 2 ü Observed event rate: 0 10.0 0 0.1 0.2 0.3 0.4 0.5 time after bounce [s] Number of targets

  14. Galactic event @ 8.5 kpc ü Water-Cherenkov detector - Super Kamiokande (-Gd) s17.0 - Hyper Kamiokande ü Reaction channels - inverse beta decay - electron scattering KN+’16, MNRAS ü Observed event rate: ü Timing information (via IBD): the bounce time within � 3.0 ms (HK) at 95% confidence level. Number of targets ü Pointing information (via e - scattering): ~ 6˚ (SK), ~ 3˚ (SK-Gd), ~ 2˚ (HK) ~ 0.6 � (HK-Gd)

  15. Probability (%) 9.8% 15.6% 15.5% 13.5% 11.5% 9.4% 7.4% Field of views (FOV) of optical telescopes 15 10 5 KN+’16, MNRAS 1.2% 16.1% 0 Naked eye 1-2m 4m >8m Evryscope 100 FOV diameter (deg) 10 ASAS-SN SK ZTF SK-Gd LSST Pan-STARRS Blanco Subaru 1 CFHT 0.1 -5 0 5 10 15 20 25 30 ←bright Optical magnitude dark→

  16. Time sequence of observations (pre-SN neutrino) Red Supergiant (RSG) progenitor Wolf-Rayet (WR) progenitor → Type II SN → Type Ib/c SN neutrino burst R* ~ 10 13-14 cm, shock velocity ~ 10 9 cm/s R* ~ 10 11 cm → Δt ~ R*/v ~ 10 4-5 s (a few hours - a day) → Δt ~ R*/v ~ 100 s (a few minutes) ! Distribute ALERT ! (SN Early Warning System; SNEWS) SBO Smith+’11, MNRAS

  17. Pinning down the progenitor compactness Template of neutrino light curves Expected detection events from numerical simulations KN+’16, MNRAS 8 ξ 2.5 ν e 40 0.4 140 Electron scattering Events per 2ms 30 Inverse-beta decay Events @ HK [per 1ms bin] neutrino luminosity [10 52 erg/s] 120 8.5 kpc 20 6 10 0.3 100 0 0 10 20 30 40 t pb [ms] 80 4 0.2 60 40 2 0.1 20 0 0.001 0.01 0.1 1 10 Post-bounce time [s] 0 0.0 0 0.1 0.2 0.3 0.4 0.5 time after bounce [s]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend