sound synthesis
play

Sound Synthesis Graduate School of Culture Technology (GSCT) Juhan - PowerPoint PPT Presentation

CTP 431 Music and Audio Computing Sound Synthesis Graduate School of Culture Technology (GSCT) Juhan Nam 1 Outlines Brief history of sound synthesis Additive Synthesis Subtractive Synthesis Analog synthesizers Nonlinear


  1. CTP 431 Music and Audio Computing Sound Synthesis Graduate School of Culture Technology (GSCT) Juhan Nam 1

  2. Outlines § Brief history of sound synthesis § Additive Synthesis § Subtractive Synthesis – Analog synthesizers § Nonlinear Synthesis – Ring modulation / Frequency modulation – Wave-shaping § Sample-based Synthesis 2

  3. Brief History § Telharmonium (Cahill, 1897) – Room-size additive synthesizer using electro-magnetic “tone wheels” – Transmitted through telephone lines (subscription only!) – Sound like organ: evolved into Hammond B3 organ (drawbars) – https://www.youtube.com/watch?v=PPlbXl81Rs0 § Theremin (Léon Theremin, 1928) – Two metal antennas recognize the relative position of hands by detecting the change of electro-magnetic fields – Each of them controls amplitude and pitch of a tone – https://www.youtube.com/watch?v=w5qf9O6c20o – https://www.youtube.com/watch?v=pSzTPGlNa5U 3

  4. Brief History § Music Concrete (Pierre Schaeffer, 1948) – Creating sounds by splicing the pieces of tapes where sounds are recorded: sampling-based synthesis – Related to musical composition – https://www.youtube.com/watch?v=c4ea0sBrw6M – Mellotron (1963): https://www.youtube.com/watch?v=HdkixaxjZCM § RCA Synthesizer: Mark II (1957) – First programmable synthesizer – Room-size and off-line processing as a synthesizer and a sequencer – https://www.youtube.com/watch?v=rgN_VzEIZ1I § Moog Synthesizers (Moog, 1964) – Mini-moog (1971): the first popular synthesizer – “Switched-On-Bach” by Wendy Carlos – https://www.youtube.com/watch?v=usl_TvIFtG0 4

  5. Brief History § Yamaha DX7 (1983) – FM synthesis, the first commercially successful synthesizer – Electronic piano sounds in 80’s pop music § Fairlight CMI (1979) – The first sampling-based digital synthesizer – https://www.youtube.com/watch?v=iOlPCpSmhRM § Kurzweil K250 (1983) – The first synthesizer that faithfully reproduced an acoustic grand piano § Yamaha VL-1 (1994) – The first commercially available physical-modeling synthesizer 5

  6. Sound Synthesis Techniques § Categories – Additive synthesis – Subtractive synthesis – Non-linear: modulation / wave-shaping – Sample-based synthesis – Physical modeling Memory Programmability Reproducibility of Interpretability Computa=on (Storage) (by # of parameters) natural sounds of parameters power Addi=ve ** ***** **** **** **** Subtrac=ve * *** ** *** ** Non-linear * *** ** ** ** Sample-base ***** * ***** N/A * ~ *** Physical model *** ** **** ***** *** ~ ***** 6

  7. Additive Synthesis § Synthesize sounds by adding multiple sine oscillators – Also called Fourier synthesis OSC Amp (Env) OSC Amp (Env) + . . . . . . OSC Amp (Env) 7

  8. Sound Examples § Web Audio Demo – http://femurdesign.com/theremin/ – http://www.venlabsla.com/x/additive/additive.html § Examples (instruments) – Kurzweil K150 • https://soundcloud.com/rosst/sets/kurzweil-k150-fs-additive – Kawai K5, K5000 – Hammond Organ 8

  9. Subtractive Synthesis § Synthesize sounds by filtering wide-band oscillators – Source-Filter model – Examples • Analog Synthesizers: oscillators + resonant lowpass filters • Voice Synthesizers: glottal pulse train + formant filters 20 20 20 10 10 10 0 0 0 Magnitude (dB) Magnitude (dB) Magnitude (dB) − 10 − 10 − 10 − 20 − 20 − 20 − 30 − 30 − 30 − 40 − 40 − 40 − 50 − 50 − 50 − 60 − 60 − 60 5 10 15 20 5 10 15 20 0 0.5 1 1.5 2 2.5 Frequency (kHz) Frequency (kHz) Frequency (kHz) 4 x 10 Filtered Source Source Filter 9

  10. 
 Subtractive Synthesis § Moog Synthesizer SoN Envelope LFO Control Keyboard Physical Envelope Control Wheels Slides Pedal Parameter Parameter Parameter Audio Path Amp Oscillators Filter (e.g. filter Parameter = offset + depth*control cut-off frequency) (sta=c value) (dynamic value) 10

  11. 
 Oscillators § Classic waveforms 2 2 1 0 0 0 − 2 − 1 − 2 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 20 20 20 Magnitude (dB) Magnitude (dB) Magnitude (dB) − 12dB/oct 0 − 6dB/oct − 6dB/oct 0 0 − 20 − 20 − 20 − 40 − 40 − 40 − 60 − 60 − 60 5 10 15 20 5 10 15 20 5 10 15 20 Frequency (kHz) Frequency (kHz) Frequency (kHz) Triangular Sawtooth Square § Modulation – Pulse width modulation – Hard-sync – More rich harmonics 11

  12. Amp Envelop Generator § Amplitude envelope generation – ADSR curve: attack, decay, sustain and release – Each state has a pair of time and target level Amplitude AUack Decay Sustain (dB) Release Note On Note Off 12

  13. Examples § Web Audio Demos – http://www.google.com/doodles/robert-moogs-78th-birthday – http://webaudiodemos.appspot.com/midi-synth/index.html – http://aikelab.net/websynth/ – http://nicroto.github.io/viktor/ § Example Sounds – SuperSaw – Leads – Pad – MoogBass – 8-Bit sounds: https://www.youtube.com/watch?v=tf0-Rrm9dI0 – TR-808: https://www.youtube.com/watch?v=YeZZk2czG1c 13

  14. Modulation Synthesis § Modulation is originally from communication theory – Carrier: channel signal, e.g., radio or TV channel – Modulator: information signal, e.g., voice, video § Decreasing the frequency of carrier to hearing range can be used to synthesize sound § Types of modulation synthesis – Amplitude modulation (or ring modulation) – Frequency modulation § Modulation is non-linear processing – Generate new sinusoidal components 14

  15. Ring Modulation / Amplitude Modulation § Change the amplitude of one source with another source – Slow change: tremolo – Fast change: generate a new tone OSC OSC Modulator Modulator OSC OSC x + x Carrier Carrier (1 + a m ( t )) A c cos(2 π f c t ) a m ( t ) A c cos(2 π f c t ) Ring Modula=on Amplitude Modula=on 15

  16. Ring Modulation / Amplitude Modulation § Frequency domain – Expressed in terms of its sideband frequencies – The sum and difference of the two frequencies are obtained according to trigonometric identity – If the modulator is a non-sinusoidal tone, a mirrored-spectrum with regard to the carrier frequency is obtained carrier sideband sideband a m ( t ) = A m sin(2 π f m t )) f c -f m f c f c +f m 16

  17. Examples § Tone generation – SawtoothOsc x SineOsc – https://www.youtube.com/watch?v=yw7_WQmrzuk § Ring modulation is often used as an audio effect – http://webaudio.prototyping.bbc.co.uk/ring-modulator/ 17

  18. Frequency Modulation § Change the frequency of one source with another source – Slow change: vibrato – Fast change: generate a new (and rich) tone – Invented by John Chowning in 1973 à Yamaha DX7 OSC Modulator A c cos(2 π f c t + β sin(2 π f m t )) frequency OSC β = A m Carrier Index of modula=on f m 18

  19. Frequency Modulation § Frequency Domain – Expressed in terms of its sideband frequencies – Their amplitudes are determined by the Bessel function – The sidebands below 0 Hz or above the Nyquist frequency are folded k = −∞ ∑ y ( t ) = A c J k ( β )cos(2 π ( f c + kf m ) t ) k = −∞ carrier sideband1 sideband1 sideband2 sideband2 sideband3 sideband3 f c -3f m f c -f m f c f c +f m f c -2f m f c +2f m f c +3f m 19

  20. Bessel Function ( − 1) n ( β 2 ) k + 2 n ∞ ∑ J k ( β ) = n !( n + k )! n = 0 1 Carrier Sideband 1 Sideband 2 Sideband 3 Sideband 4 0.5 J_(k) 0 − 0.5 0 50 100 150 200 250 300 350 beta 20

  21. Bessel Function 21

  22. The Effect of Modulation Index 1 1 Amplitude Amplitude 0 0 − 1 − 1 0 500 1000 1500 2000 0 500 1000 1500 2000 Time (Sample) Time (Sample) 20 Magnitude (dB) 20 Magnitude (dB) Beta = 0 Beta = 1 0 0 − 20 − 20 − 40 − 40 − 60 − 60 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Frequency (kHz) Frequency (kHz) 1 1 Amplitude Amplitude 0 0 − 1 − 1 0 500 1000 1500 2000 0 500 1000 1500 2000 Time (Sample) Time (Sample) 20 20 Magnitude (dB) Magnitude (dB) Beta = 10 Beta = 20 0 0 − 20 − 20 − 40 − 40 − 60 − 60 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Frequency (kHz) Frequency (kHz) f c = 500, f m = 50 22

  23. “Algorithms” in DX7 hUp://www.audiocentralmagazine.com/yamaha-dx-7-riparliamo-di-fm-e-non-solo-seconda-parte/yamaha-dx7-algorithms/ 23

  24. Examples § Web Audio Demo – http://www.taktech.org/takm/WebFMSynth/ § Sound Examples – Bell – Wood – Brass – Electric Piano – Vibraphone 24

  25. Non-linear Synthesis (wave-shaping) § Generate a rich sound spectrum from a sinusoid using non- linear transfer functions (also called “distortion synthesis”) § Examples of transfer function: y = f(x) – y = 1.5x’ – 0.5x’ 3 x’=gx: g correspond to the “gain knob” of the distor=on – y = x’/(1+|x’|) – y = sin(x’) T 0 (x)=1, T 1 (x)=x, – Chebyshev polynomial: T k+1 (x) = 2xT k (x)-T k-1 (x) T 2 (x)=2x 2 -1, T 2 (x)=4x 3 -3x 1 1 Amplitude Amplitude 1 0 0 0.5 − 1 0 50 100 150 200 − 1 Amplitude 0 50 100 150 200 Time (Sample) Time (Sample) 0 20 Magnitude (dB) 20 Magnitude (dB) 0 0 − 0.5 − 20 − 20 − 40 − 1 − 40 − 60 − 1 − 0.5 0 0.5 1 5 10 15 20 Time (Sample) − 60 Frequency (kHz) 5 10 15 20 Frequency (kHz) 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend