singularity analysis a perspective
play

Singularity Analysis: A Perspective Philippe Flajolet ( Inria , - PowerPoint PPT Presentation

MSRI, Berkeley, June 2004 Singularity Analysis: A Perspective Philippe Flajolet ( Inria , France) Analysis of Algorithms Average-Case, Probabilistic Properties of Random Structures? Counting and asymptotics n ! n n e n


  1. MSRI, Berkeley, June 2004 Singularity Analysis: A Perspective Philippe Flajolet ( Inria , France)

  2. Analysis of Algorithms ↓ Average-Case, Probabilistic ↓ Properties of Random Structures? • Counting and asymptotics n ! ∼ n n e − n √ 2 πn Z x 1 e − t 2 / 2 dt. D • Asymptotic laws Ω n → √ (e.g., Monkey and typewriter!) 2 π −∞ — Probabilistic, stochastic — Analytic Combinatorics: Generating Functions

  3. 1. Introduction “Symbolic” Methods Rota-Stanley; Foata-Schutzenberger; Joyal and uqam group; Jackson-Goulden, &c; F.; ca 1980 ± . F-Salvy-Zimmermann 1991 ❀ Computer Algebra . Basic combinatorial constructions admit of direct translations as operators over generating functions (GF’s) .

  4. C : class of comb. structures; C n : # objects of size n ↓ ↓ ↓  �  C n z n C ( z ) := (counting) � z n  � C ( z ) := C n n !  � C n,k z n u k  C ( z, u ) := � C n,k u k z n (params)  � C ( z, u ) := n ! Ordinary GF’s for unlabelled structures. Exponential GF’s for labelled structures.

  5. “Dictionaries” = Constructions viewed as Operators over GF’s. Constr. Operations Union + + × × Product (1 − f ) − 1 (1 − f ) − 1 S equence e f M ultiSet P´ olya Exp. log(1 − f ) − 1 C ycle P´ olya Log. (unlab.) (lab.) f ( z ) + 1 2 f ( z 2 ) + · · · ` ´ Exp( f ) := exp 1 Log( f ) := log 1 − f ( z ) + · · · Books: Goulden-Jackson, Bergeron-LL, Stanley, F-Sedgewick ⇒ How to extract coeff., especially, asymptotically? = ?

  6. “Complex–analytic Structures” Interpret: ♥ Counting GF as analytic transformation of C ; ♥ Comb. Construction as analytic functional. Singularities are crucial to asymptotic prop’s! (cf. analytic number theory, complex analysis, etc) Asymptotic counting via Singularity Analysis (S.A.) Asymptotic laws via Perturbation + S.A.

  7. 1 1 dz Z f ( z ) = (1 − z − z 2) − 1. ℑ f ( z ) , 1 − z − z 2 zn +1 2 iπ Refs: F–Odlyzko, SIAM A&DM, 1990 ≪ FO82 on tree height; Odlyzko’s 1995 survey in Handbook of Combinatorics + Banderier, Fill, J. Gao, Gonnet, Gourdon, Kapur, G. Labelle, Laforest, T. Lafforgue, Noy, Odlyzko, Panario, Poblete, Pouyanne, Prodinger, Puech, Richmond, Robson, Salvy, Schaeffer, Sipala, Soria, Steyaert, Szpankowski, B. Vall´ ee, Viola .

  8. ♠ Location of singularity at z = ρ : coeff. [ z n ] f ( z ) = ρ − n · coeff. [ z n ] f ( ρz ) ♠ Nature of singularity at z = 1: 1 − → n + 1 ∼ n (1 − z ) 2 1 1 H n ≡ 1 1 + ... + 1 1 − z log − → ∼ log n n 1 − z 1 − → 1 ∼ 1 1 − z ! 1 1 2 n 1 √ 1 − z − → ∼ √ πn 2 2 n n 8 > > ρ − n < Location of sing’s : Exponential factor > > : Nature of sing’s : “Polynomial” factor ϑ ( n )

  9. Generating Function ❀ Coefficients Solving a “Tauberian” problem R eal–Tauberian Darboux-P´ olya Singularity An. 0 1 (large = ⇒ large) (smooth = ⇒ small) (Full mappings) Combinatorial constructions ❀ Analytic Functionals ⇒ Analytic continuation prevails for comb. GF’s =

  10. 2. Basic Singularity Analysis Theorem 1. Basic scale translates: σ α,β ( z ) := (1 − z ) − α � � β 1 1 z log 1 − z n α − 1 [ z n ] σ α,β Γ( α ) (log n ) β . = ⇒ ∼ n →∞ Proof . Cauchy’s coefficient integral, f ( z ) = (1 − z ) − α Z 1 dz [ z n ] f ( z ) = f ( z ) z n +1 2 iπ γ ( z = 1 + t ↓ ↓ ↓ ↓ n ) „ « − α Z 1 − t e − t dt 2 iπ n n H n α − 1 × 1 Γ( α ) .

  11. “Camembert” Theorem 2. O –transfers: Under continuation in a ∆ -domain, [ z n ] f ( z ) = O ([ z n ] σ α,β ( z )) . ⇒ f ( z ) = O ( σ α,β ( z )) = Proof :

  12.   f ( z ) = λσ ( z ) + µτ ( z ) + ... + O ( ω ( z ))   Usage: ⇒ =    f n = λσ n + µτ n + ... + O ( ω n ) . Similarly: o -transfer. • Dominant singularity at ρ gives factor ρ − n . • Finitely many singularities work fine

  13. Example 1 . 2-regular graphs [Comtet] (Originally by Darboux-P´ olya.) „ 1 « G = M 2 C ≥ 3 ( Z ) „ 1 « 2 − z 2 1 − z − z 1 b G ( z ) = exp 2 log 4 e − 3 / 4 b G ( z ) ∼ √ 1 − z z → 1 e − 3 / 4 G n ∼ √ πn . n ! n →∞ ✷ > equivalent(exp(-z/2-z^2/4)/sqrt(1-z),z,n,4); # By SALVY 1/2 3/2 5/2 exp(-3/4) (1/n) exp(-3/4) (1/n) exp(-3/4) (1/n) ------------------ - 5/8 ------------------ + 1/128 ------------------ 1/2 1/2 1/2 Pi Pi Pi

  14. Example 2 . Richness index of trees [F-Sipala-Steyaert,90] = Number of different terminal subtrees. Catalan case: ! “p ” X √ K ( z ) = 1 1 2 k 1 − 4 z − 4 z k +1 − 1 − 4 z 2 z k + 1 k k ≥ 0 1 ≈ √ Z log Z , Z := 1 − 4 z K ( z ) z → 1 / 4 r n 8 log 2 √ log n, Mean index n →∞ C ∼ C ≡ . π = Compact tree representations as dag s = Common Subexpression Pb. ✷

  15. Extensions ♥ Slowly varying = ⇒ slowly varying: Log-log = ⇒ Log-Log, . . . ♥ Full asymptotic expansions ♥ Uniformity of coefficient extraction [ z n ] { F u ( z ) } u ∈ Ω = ❀ later!. ♥ Some cases with natural boundary [Fl-Gourdon-Panario-Pouyanne] Example 3 . Distinct Degree Factorization [DDF] in Polynomial Fact ❀ Greene–Knuth: „ « ∞ Y 1 + z k [ z n ] . k k =1 Hybrid w/ Darboux: e − γ + e − γ + · · · + ⋆ ( − 1) n + ⋆ ω n ✷ n 3 + · · · n 3 n Cf. Hardy-Ramanujan’s partition analysis “without contrast”.

  16. 3. Closure Properties Function of S.A.–type = amenable to singularity analysis • is continuable in a ∆-domain, • admits singular expansion in scale { σ α,β } . Theorem 3. Generalized polylogarithms � (log n ) k n − α z n Li α,k := are of S.A.-type. Proof . Cauchy-Lindel¨ of representations Z 1 / 2+ i ∞ X ϕ ( n )( − z ) n = − 1 π ϕ ( s ) z s sin πs ds. 2 iπ 1 / 2 − i ∞ + Mellin transform techniques (Ford, Wong, F.).

  17. Example 4 . Entropy of Bernoulli distribution X ` n H n := − p k (1 − p ) n − k π n,k log π n,k , ´ π n,k ≡ k X k log( k !) z k = (1 − z ) − 1 Li 0 , 1 ( z ) involves p 1 2 log n + 1 2 πp (1 − p ) + · · · . 2 + log Redundancy, coding, information th.; Jacquet-Szpankowski via Analytic ✷ dePoissonization. • Elements like log n, √ n in combinatorial sums

  18. Theorem 4. Functions of S.A.-type are closed under integration and differentiation. Proof . Adapt from Olver, Henrici, etc. Theorem 5. Functions of S.A.-type are closed under Hadamard product � ( f n g n ) z n . f ( z ) ⊙ g ( z ) := n Proof . Start from Hadamard’s formula Z ” dt “ w 1 f ( z ) ⊙ g ( z ) = f ( t ) g t . 2 iπ t γ + adapt Hankel contours [H., Jungen, R. Wilson ❀ Fill-F-Kapur]

  19. Example 5 . Divide-and -conquer recurrences X f n = t n + π n,k ( f k + f n − k ) Sing( f ( z )) = Φ(Sing( t ( z ))) Asympt[ f n ] = Ψ(Sing( t )) . E.g., Catalan statistics: need P ` 2 n ´ log n · z n . n Useful in random tree applications [Fill-F-Kapur, 2004 + , Fill-Kapur] // Neininger-Hwang et al. ≪ Knuth-Pittel. Moments ↔ contraction method ✷ [R¨ osler-R¨ uschendorf-Neininger] K * n ? n−K

  20. 4. Functional Equations • Rational functions. Linear system Q ≥ 0 [ z ] implies polar singularities: X [ z n ] f ( z ) ≈ ω n n k , ω ∈ Q , k ∈ Z ≥ 0 . + irreducibility: Perron-Frobenius = ⇒ simple dom. pole . • Word problems from regular language models; • Transfer matrices [Bender-Richmond]: dimer in strip, knights, etc. ❀ Vall´ ee’s generalization to dynamical sources via transfer operators. • Algebraic functions, by Puiseux expansions ( Z p/q ) ≪ S.A. or Darboux! X X [ z n ] f ( z ) ≈ ω n n p/q , ω ∈ Q , p/q ∈ Q , Asymptotics of coeff. is decidable [Chabaud-F-Salvy]. • Word problems from context-free models ; • Trees ; Geom. configurations (non-crossing graphs, polygonal triangs.); Planar Maps [Tutte...]; Walks [Banderier Bousquet-M., Schaeffer], . . .

  21. (1 − √ 1 − 4 z ) / (2 z ) Square-root singularity is “ universal ” for many recursive classes = controlled “failure” of Implicit Function Theorem Z ∝ Y 2 Entails coeff. asymptotic ≈ ω n n − 3 / 2 with critical exponent − 3 / 2. E.g., unbalanced 2–3 trees (Meir-Moon): f = zφ ( f ) , φ ( u ) = 1 + u 2 + u 3 . P´ olya’s combinatorial chemistry programme: f ( z ) = z Exp( f ( z )) ≡ ze f ( z )+ 1 2 f ( z 2 )+ 1 3 f ( z 3 )+ ··· Starting with P´ olya 1937; Otter 1949; Harary-Robinson et al. 1970’s; Meir-Moon 1978; Bender/Meir-Moon; Drmota-Lalley-Woods thm. 1990 +

  22. • “Holonomic” functions. Defined as solutions of linear ODE’s with coeffs in C ( z ) [Zeilberger] ≡ D -finite. L [ f ( z )] = 0 , L ∈ C ( z )[ ∂ z ] . • Stanley, Zeilberger, Gessel: Young tableaux and permutation statistics; regular graphs, constrained matrices, etc. Fuchsian case (or “regular” singularity) ( Z β log k Z ): � [ z n ] f ( z ) ≈ ω n n β (log n ) k , ω, β ∈ Q , k ∈ Z ≥ 0 . S.A. applies automatically to classical classification. Asymptotics of coeff is decidable — general case: modulo oracle for connection problem; — strictly positive case: “usually” OKay.

  23. QTrees: Example 6 . Quadtrees—Partial Match [FGPR’92] Divide-and-conquer recurrence with coeff. in Q ( n ) Fuchsian equation of order d (dimension) for GF √ Q ( d =2) ≍ n ( 17 − 3) / 2 . n ✷ E.g., d = 2: Hypergeom 2 F 1 with algebraic arguments. Extended by Hwang et al. Cf also Hwang’s Cauchy ODE cases. Panholzer-Prodinger+Martinez, . . .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend