shifting numerical monoids
play

Shifting numerical monoids Christopher ONeill University of - PowerPoint PPT Presentation

Shifting numerical monoids Christopher ONeill University of California Davis coneill@math.ucdavis.edu Joint with Rebecca Conaway*, Felix Gotti, Jesse Horton*, Roberto Pelayo, Mesa Williams*, and Brian Wissman * = undergraduate student


  1. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ) : successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 4 / 25

  2. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ) : successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . M n = � n , n + 6 , n + 9 , n + 20 � : ∆( M n ) = { 1 } for all n ≥ 48 Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 4 / 25

  3. 4 10 14 50 100 150 200 0 2 12 6 8 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 5 / 25

  4. 4 8 14 12 50 100 150 200 0 2 10 6 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c ( M n ) : measures spread of factorizations in M n . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 5 / 25

  5. 2 6 14 12 10 50 100 150 200 0 8 4 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c ( M n ) : measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 5 / 25

  6. 2 6 14 12 10 50 100 150 200 0 8 4 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c ( M n ) : measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 5 / 25

  7. 2 4 14 12 10 8 50 100 150 200 0 6 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c ( M n ) : measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : c ( M n ) is periodic-linear (quasilinear) for n ≥ 126. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 5 / 25

  8. 1000 2000 3000 50 100 150 200 0 500 2500 1500 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 6 / 25

  9. 500 1500 3000 2500 50 100 150 200 0 2000 1000 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ) : Betti numbers of the defining toric ideal I M n . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 6 / 25

  10. 0 500 3000 2500 2000 1500 50 100 150 200 1000 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ) : Betti numbers of the defining toric ideal I M n . Theorem (Vu, 2014) The Betti numbers of M n are eventually r k -periodic in n. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 6 / 25

  11. 0 500 3000 2500 2000 1500 1000 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ) : Betti numbers of the defining toric ideal I M n . Theorem (Vu, 2014) The Betti numbers of M n are eventually r k -periodic in n. M n = � n , n + 6 , n + 9 , n + 20 � : Graded degrees for β 0 ( M n ) Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 6 / 25

  12. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  13. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  14. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  15. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  16. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c ( M n ) is eventually r k -quasilinear. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  17. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c ( M n ) is eventually r k -quasilinear. Underlying cause: Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  18. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +) , and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c ( M n ) is eventually r k -quasilinear. Underlying cause: minimal presentations! Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 7 / 25

  19. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 8 / 25

  20. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 8 / 25

  21. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 8 / 25

  22. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 8 / 25

  23. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 8 / 25

  24. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  25. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  26. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  27. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  28. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  29. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a x a − x b ∈ I S ⇒ x b − x a ∈ I S a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  30. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a x a − x b ∈ I S ⇒ x b − x a ∈ I S a ∼ b ⇒ b ∼ a ( x a − x b ) + ( x b − x c ) = x a − x c a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  31. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a x a − x b ∈ I S ⇒ x b − x a ∈ I S a ∼ b ⇒ b ∼ a ( x a − x b ) + ( x b − x c ) = x a − x c a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . x a − x b ∈ I S ⇒ x c ( x a − x b ) ∈ I S a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 9 / 25

  32. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  33. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  34. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  35. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  36. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  37. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  38. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : (( 7 , 2 , 0 ) , ( 4 , 4 , 0 )) = (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) + (( 4 , 2 , 0 ) , ( 4 , 2 , 0 )) Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  39. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : (( 7 , 2 , 0 ) , ( 4 , 4 , 0 )) = (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) + (( 4 , 2 , 0 ) , ( 4 , 2 , 0 )) Cong ( ρ ) = ker π when the graph on π − 1 ( n ) is connected for all n ∈ S . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  40. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : (( 7 , 2 , 0 ) , ( 4 , 4 , 0 )) = (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) + (( 4 , 2 , 0 ) , ( 4 , 2 , 0 )) Cong ( ρ ) = ker π when the graph on π − 1 ( n ) is connected for all n ∈ S . I S = � x u − x v : ( u , v ) ∈ ρ � Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 10 / 25

  41. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  42. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  43. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  44. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  45. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  46. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  47. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  48. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  49. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } ⊂ ker π π − 1 ( 18 ) : π − 1 ( 60 ) : All minimal presentations: { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 10 , 7 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 7 , 2 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 4 , 4 , 0 ) , ( 0 , 0 , 3 )) } { (( 3 , 0 , 0 ) , ( 0 , 2 , 0 )) , (( 1 , 6 , 0 ) , ( 0 , 0 , 3 )) } β 0 ( I S ) = { 18 , 60 } Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 11 / 25

  50. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  51. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  52. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  53. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  54. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  55. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  56. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  57. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  58. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  59. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  60. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  61. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  62. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  63. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  64. Kernel congruences and minimal presentations π : N k S = � r 1 , . . . , r k � , − → S A larger example: S = � 13 , 44 , 106 , 120 � . Minimal presentation ρ has | ρ | = 5 relations. Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 12 / 25

  65. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  66. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  67. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  68. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  69. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  70. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  71. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  72. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  73. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k 2 types of minimal relations a ∼ b : Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  74. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap): | a | = | b | Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  75. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap): | a | = | b | Relations that change # copies of n (costly): | a | < | b | Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  76. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap): | a | = | b | Relations that change # copies of n (costly): | a | < | b | mostly a k ← − − − − − − → mostly b 0 Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  77. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap): | a | = | b | Relations that change # copies of n (costly): | a | < | b | mostly a k ← − − − − − − → mostly b 0 In M n = � n , n + 6 , n + 9 , n + 20 � with n = 450: Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

  78. Intuition: “sufficiently shifted” monoids π n : N k + 1 M n = � n , n + r 1 , . . . , n + r k � , − → M n a 0 n + a 1 ( n + r 1 ) + · · · + a k ( n + r k ) = b 0 n + b 1 ( n + r 1 ) + · · · + b k ( n + r k ) | a | n + a 1 r 1 + · · · + a k r k = | b | n + b 1 r 1 + · · · + b k r k 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap): | a | = | b | Relations that change # copies of n (costly): | a | < | b | mostly a k ← − − − − − − → mostly b 0 In M n = � n , n + 6 , n + 9 , n + 20 � with n = 450: 3 ( n + 6 ) = n + 2 ( n + 9 ) is cheap 4 ( n + 9 ) + 21 ( n + 20 ) = 25 n + ( n + 6 ) is costly Christopher O’Neill (UC Davis) Shifting numerical monoids March 21, 2017 13 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend