scalable source coding with causal side information and a
play

Scalable Source Coding With Causal Side Information and a Causal - PowerPoint PPT Presentation

Scalable Source Coding With Causal Side Information and a Causal Helper Shraga Bross Faculty of Engineering, Bar-Ilan University, Israel brosss@biu.ac.il ISIT, June 2020 Transmission model Z k X 1 , 1 , . . . , 1 ( X n ) X 1 ,n


  1. Scalable Source Coding With Causal Side Information and a Causal Helper Shraga Bross Faculty of Engineering, Bar-Ilan University, Israel brosss@biu.ac.il ISIT, June 2020

  2. Transmission model Z k ❄ X 1 , 1 , . . . , ˆ ˆ φ 1 ( X n ) X 1 ,n ✲ ✲ ✲ X n Encoder Decoder 1 g k ( φ 1 ( X n ) , Z k ) k = 1 , . . . , n ❄ X 2 , 1 , . . . , ˆ ˆ ✲ X 2 ,n ✲ ✲ Decoder 2 φ 2 ( X n ) ✻ Y k Figure: Scalable source coding with causal side-information and causal helper. 2 / 16

  3. Definition of a code An ( n, M 1 , M 2 , � n k =1 L k , D 1 , D 2 ) scalable code for the source X with causal SI ( Y, Z ) and causal helper, consists of: A first-stage encoder map φ 1 : X n → { 1 , . . . , M 1 } , and a sequence 1 ψ 1 , 1 , . . . , ψ 1 ,n of reconstruction mappings ψ 1 ,k : { 1 , . . . , M 1 } × Z k → ˆ X , k = 1 , . . . , n such that, with E denoting the expectation operator, E d [ X n , ( ψ 1 , 1 ( φ 1 ( X n ) , Z 1 ) , . . . , ψ 1 ,k ( φ 1 ( X n ) , Z k ) , . . . , ψ 1 ,n ( φ 1 ( X n ) , Z n ))] ≤ D 1 . (1) A unidirectional conference between Decoder 1 and Decoder 2 consisting of 2 a sequence of mappings g k : { 1 , . . . , M 1 } × Z k → { 1 , . . . , L k } , k = 1 , . . . , n A second-stage encoder map φ 2 : X n → { 1 , . . . , M 2 } , and a sequence 3 ψ 2 , 1 , . . . , ψ 2 ,n of reconstruction mappings ψ 2 ,k : { 1 , 2 , . . . , M 1 } × { 1 , 2 , . . . , M 2 } × { 1 , . . . , L 1 } × . . . × { 1 , . . . , L k } × Y k → ˆ X 3 / 16

  4. Definition of achievable rate-distortions tuple such that E d [ X n , ( ψ 2 , 1 ( φ 1 ( X n ) , φ 2 ( X n ) , g 1 ( φ 1 ( X n ) , Z 1 ) , Y 1 ) , . . . , � k ψ 2 ,k ( φ 1 ( X n ) , φ 2 ( X n ) , g j ( φ 1 ( X n ) , Z j ) j =1 , Y k ) , . . . , � � n ψ 2 ,n ( φ 1 ( X n ) , φ 2 ( X n ) , � g j ( φ 1 ( X n ) , Z j ) j =1 , Y n ))] ≤ D 2 . (2) The rate tuple ( R 1 , R 2 , R h ) of the scalable code is n R 1 = 1 R 2 = R 1 + 1 R h = 1 � n log M 1 , n log M 2 , log L k . n k =1 A D - achievable tuple ( R 1 , R 2 , R h ) is defined in the regular way. The collection of all D -achievable rate tuples is the achievable scalable source-coding region R ( D ) . 4 / 16

  5. Related work With non-causal SI at the decoders: “On successive refinement for the Wyner-Ziv problem” [Steinberg-Merhav (2004)] — characterization of R ( D ) when X − ◦ Y − ◦ Z . “Side-information scalable source coding” [Tian-Diggavi (2008)] — inner and outer bounds on R ( D ) when X − ◦ Z − ◦ Y . “On successive refinement for the Wyner-Ziv problem with partially cooperating decoders” [Bross-Weissman (2008)] — conclusive characterization of encoder rates but gap in the helper’s rate. With causal SI at the decoders: “On successive refinement with causal side information at the decoders” [Maor-Merhav (2008)] — characterization of R ( D ) no matter what is the relative SI quality at the decoders. This work: extends the last in the sense that Decoder 1 can communicate with Decoder 2, via a conference channel, at a rate not exceeding R h 5 / 16

  6. Definition of R ∗ ( D ) Fix a pair D = ( D 1 , D 2 ) . Define R ∗ ( D ) to be the set of all ( R 1 , R 2 , R h ) for which there exist random variables ( U, V, W ) taking values in finite alphabets U , V , W , respectively, such that ( U, V ) − ◦ X − ◦ ( Y, Z ) forms a Markov chain. 1 There exist deterministic maps 2 f 1 : U × Z → ˆ X g : U × Z → W f 2 : U × V × W × Y → ˆ X such that, with W � g ( U, Z ) , E d ( X, f 1 ( U, Z )) ≤ D 1 E d ( X, f 2 ( U, V, W, Y )) ≤ D 2 . The rates R 1 , R 2 and R h satisfy 3 R 1 ≥ I ( X ; U ) (3a) R 2 ≥ I ( X ; UV ) (3b) R h ≥ H ( W | U ) . (3c) 6 / 16

  7. Main result Theorem R ( D ) = R ∗ ( D ) . Remarks: ◦ ( Y, Z ) , in the definition of R ∗ ( D ) , The converse shows that ( U, V ) − ◦ X − can be replaced by the Markov chain U − ◦ V − ◦ X − ◦ ( Y, Z ) . The converse holds as well when the causal helper and the reconstructors are allowed to depend also on X i − 1 . That is, g k = g k ( φ 1 ( X n ) , Z i , X i − 1 ) , ˆ X 1 ,k = ψ 1 ,k ( φ 1 ( X n ) , Z i , X i − 1 ) , and X 2 ,k = ψ 2 ,k ( φ 1 ( X n ) , φ 2 ( X n ) , { g j ( · ) } k ˆ j =1 , Y i , X i − 1 ) . 7 / 16

  8. Example Let X be a BSS and let d ( · , · ) be the Hamming loss. The SI pair ( Z, Y ) is conditionally independent given X , where Z is the output of a BSC ( δ 1 ) channel with input X , and Y is the output of a BSC ( δ 2 ) channel with input X , where 0 < δ 1 < δ 2 < 0 . 5 . Define � 1 − H b (∆) 0 ≤ ∆ ≤ d c ( δ ) R X,δ (∆) = H ′ b ( d c ( δ ))( δ − ∆) d c ( δ ) < ∆ ≤ δ where d c ( δ ) the solution to the equation (1 − H b ( d c )) / ( d c − δ ) = − H ′ b ( d c ) , where 0 < d c < δ < 0 . 5 . R X,δ ( D ) is the RDF for SC with causal SI Y ( Y is the output of a BSC ( δ ) channel with input X ) [Weissman-El Gamal (2006)]. Fix a rate-constraint R h and a distortion pair ( D 1 , D 2 ) , where D 2 < D 1 < δ 1 . 8 / 16

  9. Example cont. Let ˜ V = X ⊕ S , where S ∼ Ber (min { ˜ D 2 , d c ( δ 2 ) } ) � β 2 is independent of ( X, Z, Y ) and ˜ D 2 > D 2 will be defined in the sequel. � δ 2 − max { ˜ D 2 , d c ( δ 2 ) } � Let B 1 ∼ Ber independently of ( X, Y, Z, S ) . Let δ 2 − d c ( δ 2 ) T ∼ Ber (Pr { T = 1 } ) , independently of ( X, Y, Z, S, B 1 ) such that Pr { T = 1 } ∗ β 2 = min { D 1 , d c ( δ 1 ) } � β 1 . With the assumption that γ � δ 1 − max { D 1 , d c ( δ 1 ) } δ 2 − d c ( δ 2 ) · ≤ 1 δ 2 − max { ˜ δ 1 − d c ( δ 1 ) D 2 , d c ( δ 2 ) } let B 2 ∼ Ber ( γ ) independently of ( X, Y, Z, S, B 1 , T ) . U − ◦ V − ◦ X − ◦ ( Y, Z ) ˜ V V X ✲ ⊕ ✲ ⊗ ✲ ✲ ⊗ ✲ ⊕ U ✻ ✻ ✻ ✻ B 1 B 2 S T Figure: Scalable source coding scheme for a BSS. 9 / 16

  10. Example cont. Let Θ h be the time fraction during which Decoder 1 (the helper) describes W , and define f 1 ( U, Z ) = B 1 · B 2 · U + (1 − B 1 · B 2 ) · Z f 2 ( U, V, W, Y ) = B 1 · V + Θ h · W + (1 − B 1 − Θ h ) · Y With the choice of W = g ( U, Z ) = Z the distortion constraint at Decoder 2 is fulfilled as long as B 1 β 2 + Θ h δ 1 + (1 − B 1 − Θ h ) δ 2 ≤ D 2 , (4) and the distortion constraint at Decoder 1 is met as long as B 1 · B 2 β 1 + (1 − B 1 · B 2 ) δ 1 ≤ D 1 . Consequently, for the first stage I ( X ; U ) = I ( X ; T ⊕ ˜ V | B 1 · B 2 = 1) = R X,δ 1 ( D 1 ) . 10 / 16

  11. Example cont. Assuming that the helper describes Z using a binary quantizer followed by an entropy encoder, given R h , we obtain R h ≥ Θ h H ( Z ) = Θ h H b ( δ 1 ) . Thus, choosing Θ h = min { R h /H b ( δ 1 ) , 1 − B 1 } (5) this quantity is an upper bound on the time fraction at which Decoder 2 can observe the lossless description of Z in forming its reconstruction. Thus, the constraint (4) becomes B 1 β 2 + (1 − B 1 ) δ 2 ≤ D 2 + min { R h /H b ( δ 1 ) , 1 − B 1 } ( δ 2 − δ 1 ) � ˜ D 2 , (6) and consequently for the second stage I ( X ; UV ) = I ( X ; V ) = I ( X ; ˜ V | B 1 = 1) = R X,δ 2 ( ˜ D 2 ) . Comparing the first and second stage rate expressions with the [Maor-Merhav] expression, inequality (6) reflects the helper’s assistance in terms of the relaxation of R 2 − R 1 . 11 / 16

  12. Converse Assume that ( R 1 , R 2 , R h ) is ( D 1 , D 2 ) achievable. Let T 1 � φ 1 ( X n ) , T 2 � φ 2 ( X n ) . Then, with U j � ( T 1 , X j − 1 , Y j − 1 , Z j − 1 ) nR 1 ≥ log M 1 ≥ H ( T 1 ) n = I ( X n ; T 1 ) = � I ( X k ; T 1 | X k − 1 ) k =1 n ( a ) � I ( X k ; T 1 X k − 1 ) = k =1 n n ( b ) � � I ( X k ; T 1 X k − 1 Y k − 1 Z k − 1 ) = = I ( X k ; U k ) . k =1 k =1 ( a ) follows since X n is memoryless, ◦ ( T 1 , X k − 1 ) − ◦ ( Y k − 1 , Z k − 1 ) forms a Markov chain. ( b ) follows since X k − 12 / 16

  13. Converse cont. Next, with V j � ( T 2 , U j ) n ( R 2 − R 1 ) ≥ log M 2 ≥ H ( T 2 | T 1 ) ≥ I ( X n ; T 2 | T 1 ) n � I ( X k ; T 2 | T 1 X k − 1 ) = k =1 n n ( c ) � I ( X k ; T 2 | T 1 X k − 1 Y k − 1 Z k − 1 ) = � = I ( X k ; V k | U k ) . k =1 k =1 ◦ ( T 1 , X k − 1 ) − ◦ ( Y k − 1 , Z k − 1 ) and ( c ) follows since X k − ◦ ( T 1 , T 2 , X k − 1 ) − ◦ ( Y k − 1 , Z k − 1 ) are Markov chains. Furthermore, X k − U k − ◦ V k − ◦ X k − ◦ ( Y k , Z k ) . Consequently, n � nR 2 ≥ nR 1 + I ( X k ; V k | U k ) k =1 n n � � ≥ [ I ( X k ; U k ) + I ( X k ; V k | U k )] = I ( X k ; U k V k ) . k =1 k =1 13 / 16

  14. Converse cont. With W j � g j ( T 1 , Z j ) we have n � nR h ≥ log L k ≥ H ( W 1 , W 2 , . . . , W n ) k =1 n � H ( W k | T 1 W k − 1 ) ≥ H ( W 1 , W 2 , . . . , W n | T 1 ) = k =1 n � H ( W k | T 1 W k − 1 Z k − 1 X k − 1 Y k − 1 ) ≥ k =1 n n ( d ) � � H ( W k | T 1 Z k − 1 X k − 1 Y k − 1 ) = = H ( W k | U k ) , k =1 k =1 where ( d ) follows since W j is a functions of ( T 1 , Z j ) . Defining f 1 ( U i , Z i ) = ψ 1 ,i ( T 1 , Z i ) we may write n n n � E [ d ( X i , ˆ � � E [ d ( X i , ψ 1 ,i ( T 1 , Z i ))] = nD 1 ≥ X 1 ,i )] = E [ d ( X i , f 1 ( U i , Z i ))] . i =1 i =1 i =1 14 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend