risk averse dynamic optimization
play

Risk averse dynamic optimization Progress in continuous time Linz - PowerPoint PPT Presentation

Risk averse dynamic optimization Progress in continuous time Linz Alois Pichler 1 Ruben Schlotter 1 November 14, 2019 1 Stochastic optimization [Markowitz, 1952] Primal Dual maximize E x x minimize var subject to x


  1. Risk averse dynamic optimization Progress in continuous time Linz Alois Pichler 1 Ruben Schlotter 1 November 14, 2019 1

  2. Stochastic optimization [Markowitz, 1952] Primal Dual � � maximize E x ⊤ ξ x ⊤ ξ minimize var subject to x ∈ R d , subject to x ∈ R d , � � x ⊤ ξ ≤ q , var E x ⊤ ξ ≥ µ, d d � � x i = 1 x i = 1 i =1 i =1 ( x i ≥ 0) ( x i ≥ 0) A. Pichler risk averse 2

  3. Assessment of risk Proposition (Axioms, cf. [Deprez and Gerber, 1985], [Artzner et al., 1999]) R : Y → R ∪{±∞} Monotonicity: if Y ≤ Y ′ , then R ( Y ) ≤ R ( Y ′ ) , 1 � Y + Y ′ � ≤ R ( Y )+ R ( Y ′ ) , Subadditivity: R 2 Translation equivariance: R ( Y + c ) = R ( Y )+ c for Y ∈ Y and 3 c ∈ R , Positive homogeneity, R ( λ Y ) = λ ·R ( Y ) for λ > 0 . 4 Equivalence principle R ( Y ) := E Y most fair, risk neutral R ( Y ) := esssup Y most unfair, totally risk averse . A. Pichler risk averse 3

  4. Reformulation [Markowitz, 1952] Primal Dual � � � � maximize E x ⊤ ξ minimize E x ⊤ ξ + R − x ⊤ ξ − x ⊤ ξ =: D � � − x ⊤ ξ s.t. −R ≤ q , s.t. E x ⊤ ξ ≥ µ, d d � � x i = 1 x i = 1 i =1 i =1 (and x i ≥ 0) . (and x i ≥ 0) . A. Pichler risk averse 4

  5. Outline Spanning horizons 3 The discrete setting 1 Nested Expressions The general multistage Explicit definition problem Hamilton Jacobi Bellman 4 Dynamic programming Hamilton Jacobi Continuous time Further assessments of risk 2 Generators Applications Risk generator References 5 A. Pichler risk averse 5

  6. Outline Spanning horizons 3 The discrete setting 1 Nested Expressions The general multistage Explicit definition problem Hamilton Jacobi Bellman 4 Dynamic programming Hamilton Jacobi Continuous time Further assessments of risk 2 Generators Applications Risk generator References 5 A. Pichler risk averse 6

  7. Multistage problem Non-Markovian difficulties Multistage optimization � ξ, x ( ξ ) � minimize E c subject to x ∈ X , x ( · ) is adapted (nonanticipative) x nonanticipative iff   x 0 ( ξ 0 )   x 1 ( ξ 0 ,ξ 1 )     .  .  � = � ξ 0 ,...,ξ T .   x   x t ( ξ 0 ,...,ξ t )     .   .  .  x T ( ξ 0 ,ξ 1 ,...,ξ T ) A. Pichler risk averse 7

  8. Problem description Discrete time In a discrete framework, the sequence of decisions is x 0 � ξ 1 � x 1 ··· � ξ T � x T . � � � ξ, x ( ξ ) � : x ( · ) ∈ X , x ( · ) adapted inf E c Problem (Risk aversion) The risk averse stochastic problem is � � minimize R c 0 ( x 0 ) , c 1 ( ξ, x 1 ) ,..., c T ( ξ, x T ) x 0 ∈ X 0 ,..., x t ∈ X t ( x t − 1 ,ξ ) A. Pichler risk averse 8

  9. Problem description Discrete time In a discrete framework, the sequence of decisions is x 0 � ξ 1 � x 1 ··· � ξ T � x T . � � � ξ, x ( ξ ) � : x ( · ) ∈ X , x ( · ) adapted inf E c Problem (Risk aversion) The risk averse stochastic problem is � � minimize R c 0 ( x 0 ) , c 1 ( ξ, x 1 ) ,..., c T ( ξ, x T ) x 0 ∈ X 0 ,..., x t ∈ X t ( x t − 1 ,ξ ) A. Pichler risk averse 8

  10. Risk Example In the simplest case, � �� T � � ξ, x 0 ( ξ ) � ,..., c T � ξ, x T ( ξ ) � ξ, x t ( ξ ) � . R c 0 = E c t t =0 Problem � � �� � � ξ, x 0 ( ξ ) � ,..., c T � ξ, x T ( ξ ) R : x ∈ X , x ( · ) adapted inf c 0 . A. Pichler risk averse 9

  11. Outline Spanning horizons 3 The discrete setting 1 Nested Expressions The general multistage Explicit definition problem Hamilton Jacobi Bellman 4 Dynamic programming Hamilton Jacobi Continuous time Further assessments of risk 2 Generators Applications Risk generator References 5 A. Pichler risk averse 10

  12. Towards dynamic programming The Bellman principle � c 0 ( x 0 ) , c 1 ( ξ, x 1 ) ,..., c T ( ξ, x T ) � , min R x 0 ∈ X 0 , x t ∈ X t ( x t − 1 ,ξ ) , s . t . t = 1 ,..., T . Definition (Time consistent) The transition functionals are recursive, if Figure: Lattice R t , u ( Y t ,..., Y u ) approximation � Y t ,..., Y v − 1 , R v , u ( Y v ,..., Y u ) � . = R t , v A. Pichler risk averse 11

  13. Towards dynamic programming Examples Conditional risk functionals Semideviation β ✁ F t � � SD ( Y | F t ) := E [ Y | F t ]+ β · E ( Y − E [ Y | F t ]) + | F t , Average Value-at-Risk α ✁ F t � � 1 AV@R α ( Y | F t ) := essinf q ✁ F t q + ( Y − q ) + | F t 1 − α E , Entropic Value-at-Risk α ✁ F t 1 1 EV@R α ( Y | F t ) := essinf t log 1 − α exp( E [ Y | F t ]) . 0 < t ✁ F t A. Pichler risk averse 12

  14. Towards dynamic programming Examples Conditional risk functionals Semideviation β ✁ F t � � SD ( Y | F t ) := E [ Y | F t ]+ β · E ( Y − E [ Y | F t ]) + | F t , Average Value-at-Risk α ✁ F t � � 1 AV@R α ( Y | F t ) := essinf q ✁ F t q + ( Y − q ) + | F t 1 − α E , Entropic Value-at-Risk α ✁ F t 1 1 EV@R α ( Y | F t ) := essinf t log 1 − α exp( E [ Y | F t ]) . 0 < t ✁ F t A. Pichler risk averse 12

  15. Towards dynamic programming Examples Conditional risk functionals Semideviation β ✁ F t � � SD ( Y | F t ) := E [ Y | F t ]+ β · E ( Y − E [ Y | F t ]) + | F t , Average Value-at-Risk α ✁ F t � � 1 AV@R α ( Y | F t ) := essinf q ✁ F t q + ( Y − q ) + | F t 1 − α E , α ✁ F t Entropic Value-at-Risk 1 1 EV@R α ( Y | F t ) := essinf t log 1 − α exp( E [ Y | F t ]) . 0 < t ✁ F t A. Pichler risk averse 12

  16. Dynamic programming equations Proposition (Bellman equations, recursive transitions [2018]) V T ( ξ, x T − 1 ) := x T ∈X Z ( x T − 1 ,ξ ) c T ( ξ, x T ) , essinf V t ( ξ, x t − 1 ) := x t ∈X t ( ξ, x t − 1 ) R t : t +1 ( c t ( ξ, x t ) , V t +1 ( ξ, x t )) . essinf V 0 solves the problem � � minimize R c 0 ( x 0 ) , c 1 ( ξ, x 1 ) ,..., c T ( ξ, x T ) , x 0 ∈ X 0 , x t ∈ X t ( x t − 1 ,ξ ) , subject to t = 1 ,..., T . A. Pichler risk averse 13

  17. Dynamic programming equations Proposition (Bellman equations, recursive transitions [2018]) V T ( ξ, x T − 1 ) := x T ∈X Z ( x T − 1 ,ξ ) c T ( ξ, x T ) , essinf � � V t ( ξ, x t − 1 ) := x t ∈X t ( ξ, x t − 1 ) R t : t +1 essinf c t ( ξ, x t ) , V t +1 ( ξ, x t ) . V 0 solves the problem � � R minimize c 0 ( x 0 ) , c 1 ( ξ, x 1 ) ,..., c T ( ξ, x T ) , x 0 ∈ X 0 , x t ∈ X t ( x t − 1 ,ξ ) , subject to t = 1 ,..., T . A. Pichler risk averse 13

  18. Outline Spanning horizons 3 The discrete setting 1 Nested Expressions The general multistage Explicit definition problem Hamilton Jacobi Bellman 4 Dynamic programming Hamilton Jacobi Continuous time Further assessments of risk 2 Generators Applications Risk generator References 5 A. Pichler risk averse 14

  19. Decisions under uncertainty The Wiener setting The motion is generated by d X t = b d t + σ d W t Definition (Generator) For a smooth function φ , � � � � 1 φ ( t +∆ t , X t +∆ t ) � G φ ( t ,ξ ) := lim ∆ t E � X t = ξ . � − φ ( t ,ξ ) ∆ t → 0 A. Pichler risk averse 15

  20. Ito’s formula Definition Recall the generator, � � � � 1 φ ( t +∆ t , X t +∆ t ) � G φ ( t ,ξ ) := lim � X t = ξ ∆ t E . � − φ ( t ,ξ ) ∆ t → 0 Lemma (Ito) For d X t = b d t + σ d W t it holds that For φ = 1 , G φ = 0 ; 1 for φ ( ξ ) = ξ , then G φ = b, the drift; 2 for φ ( ξ ) = ξ 2 , then G φ = 2 b ξ + σ 2 , the volatility; 3 for general φ ( ξ ) , 4 2 σ 2 ∂ 2 G = ∂ ∂ t + b ∂ ∂ξ + 1 ∂ξ 2 . A. Pichler risk averse 16

  21. Ito’s formula Definition Recall the generator, � � � � 1 φ ( t +∆ t , X t +∆ t ) � G φ ( t ,ξ ) := lim � X t = ξ ∆ t E . � − φ ( t ,ξ ) ∆ t → 0 Lemma (Ito) For d X t = b d t + σ d W t it holds that For φ = 1 , G φ = 0 ; 1 for φ ( ξ ) = ξ , then G φ = b , the drift; 2 for φ ( ξ ) = ξ 2 , then G φ = 2 b ξ + σ 2 , the volatility; 3 for general φ ( ξ ) , 4 2 σ 2 ∂ 2 G = ∂ ∂ t + b ∂ ∂ξ + 1 ∂ξ 2 . A. Pichler risk averse 16

  22. Ito’s formula Definition Recall the generator, � � � � 1 φ ( t +∆ t , X t +∆ t ) � G φ ( t ,ξ ) := lim � X t = ξ ∆ t E � . − φ ( t ,ξ ) ∆ t → 0 Lemma (Ito) For d X t = b d t + σ d W t it holds that For φ = 1 , G φ = 0 ; 1 for φ ( ξ ) = ξ , then G φ = b, the drift; 2 for φ ( ξ ) = ξ 2 , then G φ = 2 b ξ + σ 2 , the volatility; 3 for general φ ( ξ ) , 4 2 σ 2 ∂ 2 ∂ξ + 1 G = ∂ ∂ t + b ∂ ∂ξ 2 . A. Pichler risk averse 16

  23. Ito’s formula Definition Recall the generator, � � � � 1 φ ( t +∆ t , X t +∆ t ) � G φ ( t ,ξ ) := lim � X t = ξ . ∆ t E � − φ ( t ,ξ ) ∆ t → 0 Lemma (Ito) For d X t = b d t + σ d W t it holds that For φ = 1 , G φ = 0 ; 1 for φ ( ξ ) = ξ , then G φ = b, the drift; 2 for φ ( ξ ) = ξ 2 , then G φ = 2 b ξ + σ 2 , the volatility; 3 for general φ ( ξ ) , 4 2 σ 2 ∂ 2 ∂ t + b ∂ ∂ ∂ξ + 1 G = ∂ξ 2 . A. Pichler risk averse 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend