richardson s extrapolation
play

Richardsons Extrapolation Suppose h = 0 we have a formula N 1 ( h ) - PowerPoint PPT Presentation

Richardsons Extrapolation Suppose h = 0 we have a formula N 1 ( h ) that approximates an unknown value M M N 1 ( h ) = K 1 h + K 2 h 2 + K 3 h 3 + , (7) for some unknown constants K 1 , K 2 , K 3 , . . . . If K 1 = 0,


  1. Richardson’s Extrapolation Suppose ∀ h � = 0 we have a formula N 1 ( h ) that approximates an unknown value M M − N 1 ( h ) = K 1 h + K 2 h 2 + K 3 h 3 + · · · , (7) for some unknown constants K 1 , K 2 , K 3 , . . . . If K 1 � = 0, then the truncation error is O ( h ). For example, h 2 − f (4) ( x ) = − f ′′ ( x ) h − f ′′′ ( x ) f ′ ( x ) − f ( x + h ) − f ( x ) h 3 − · · · . h 2! 3! 4! Goal Find an easy way to produce formulas with a higher-order truncation error. Replacing h in (7) by h/ 2, we have h 2 h 3 � h � h M = N 1 + K 1 2 + K 2 4 + K 3 8 + · · · . (8) 2 Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 15 / 66

  2. Subtracting (7) with twice (8), we get M = N 2 ( h ) − K 2 2 h 2 − 3 K 3 4 h 3 − · · · , (9) where � h � � h � � � h � � N 2 ( h ) = 2 N 1 − N 1 ( h ) = N 1 + N 1 − N 1 ( h ) , 2 2 2 which is an O ( h 2 ) approximation formula. Replacing h in (9) by h/ 2, we get � h � − K 2 8 h 2 − 3 K 3 32 h 3 − · · · . M = N 2 (10) 2 Subtracting (9) from 4 times (10) gives � h � − N 2 ( h ) + 3 K 3 8 h 3 + · · · , 3 M = 4 N 2 2 which implies that � � h � � + N 2 ( h/ 2) − N 2 ( h ) + K 3 8 h 3 + · · · ≡ N 3 ( h ) + K 3 8 h 3 + · · · M = N 2 2 3 Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 16 / 66

  3. Using induction, M can be approximated by M = N m ( h ) + O ( h m ) , where � h � + N m − 1 ( h/ 2) − N m − 1 ( h ) N m ( h ) = N m − 1 . 2 m − 1 − 1 2 Centered difference formula . From the Taylor’s theorem f ( x + h ) = f ( x )+ hf ′ ( x )+ h 2 2! f ′′ ( x )+ h 3 3! f ′′′ ( x )+ h 4 4! f (4) ( x )+ h 5 5! f (5) ( x ) + · · · f ( x − h ) = f ( x ) − hf ′ ( x )+ h 2 2! f ′′ ( x ) − h 3 3! f ′′′ ( x )+ h 4 4! f (4) ( x ) − h 5 5! f (5) ( x ) + · · · we have f ( x + h ) − f ( x − h ) = 2 hf ′ ( x ) + 2 h 3 3! f ′′′ ( x ) + 2 h 5 5! f (5) ( x ) + · · · , Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 17 / 66

  4. and, consequently, � h 2 3! f ′′′ ( x 0 ) + h 4 � f ( x 0 + h ) − f ( x 0 − h ) 5! f (5) ( x 0 ) + · · · f ′ ( x 0 ) = , − 2 h � h 2 3! f ′′′ ( x 0 ) + h 4 � 5! f (5) ( x 0 ) + · · · ≡ N 1 ( h ) − . (11) Replacing h in (11) by h/ 2 gives − h 2 h 4 � h � 1920 f (5) ( x 0 ) − · · · . f ′ ( x 0 ) = N 1 24 f ′′′ ( x 0 ) − (12) 2 Subtracting (11) from 4 times (12) gives f ′ ( x 0 ) = N 2 ( h ) + h 4 480 f (5) ( x 0 ) + · · · , where � � h � � � h � N 2 ( h ) = 1 + N 1 ( h/ 2) − N 1 ( h ) 4 N 1 − N 1 ( h ) = N 1 . 3 2 2 3 Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 18 / 66

  5. In general, f ′ ( x 0 ) = N j ( h ) + O ( h 2 j ) with � h � + N j − 1 ( h/ 2) − N j − 1 ( h ) N j ( h ) = N j − 1 . 4 j − 1 − 1 2 Example Suppose that x 0 = 2 . 0, h = 0 . 2 and f ( x ) = xe x . Compute an approximated value of f ′ (2 . 0) = 22 . 16716829679195 to six decimal places. Solution . By centered difference formula, we have f (2 . 0 + 0 . 2) − f (2 . 0 − 0 . 2) N 1 (0 . 2) = = 22 . 414160 , 2 h f (2 . 0 + 0 . 1) − f (2 . 0 − 0 . 1) N 1 (0 . 1) = = 22 . 228786 . h Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 19 / 66

  6. It implies that N 2 (0 . 2) = N 1 (0 . 1) + N 1 (0 . 1) − N 1 (0 . 2) = 22 . 166995 3 which does not have six decimal digits. Adding N 1 (0 . 05) = 22 . 182564, we get N 2 (0 . 1) = N 1 (0 . 05) + N 1 (0 . 05) − N 1 (0 . 1) = 22 . 167157 3 and N 3 (0 . 2) = N 2 (0 . 1) + N 2 (0 . 1) − N 2 (0 . 2) = 22 . 167168 15 which contains six decimal digits. Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 20 / 66

  7. O ( h 2 ) O ( h 3 ) O ( h 4 ) O ( h ) 1: N 1 ( h ) = N ( h ) 2: N 1 ( h/ 2) = N ( h/ 2) 3: N 2 ( h ) 4: N 1 ( h/ 4) = N ( h/ 4) 5: N 2 ( h/ 2) 6: N 3 ( h ) 7: N 1 ( h/ 8) = N ( h/ 8) 8: N 2 ( h/ 4) 9: N 3 ( h/ 2) 10: N 4 ( h ) Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 21 / 66

  8. Remark In practice, we are often encountered with the situation where the order of the numerical method is unknown. That is, the error expansion is of the form M − N ( h ) = K 1 h p 1 + K 2 h p 2 + K 3 h p 3 + · · · , (13) where p 1 , p 2 , · · · are unknown. Solving for the leading order p 1 , together with the primary unknowns M and K 1 , requires 3 equations, which can be obtained from, for example, the numerical results at h , h/ 2 and h/ 4: K 1 h p 1 + · · · , M − N ( h ) = � h � p 1 + · · · , M − N ( h 2 ) = K 1 (14) 2 � h � p 1 + · · · M − N ( h 4 ) = K 1 4 The answer is given by N ( h ) − N ( h 2 ) p 1 ≈ log 2 N ( h 2 ) − N ( h 4 ) Once p 1 is known, Richardson extrapolation can be proceeded as before. Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 22 / 66

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend