reverse plane partitions via representations of quivers
play

Reverse plane partitions via representations of quivers Al Garver, - PowerPoint PPT Presentation

Reverse plane partitions via representations of quivers Al Garver, UQAM University of Michigan (joint with Rebecca Patrias and Hugh Thomas) arXiv: 1812.08345 FPSAC 2019, University of Ljubljana, Slovenia July 4, 2019 1 / 23 Outline


  1. Reverse plane partitions via representations of quivers Al Garver, UQAM Ñ University of Michigan (joint with Rebecca Patrias and Hugh Thomas) arXiv: 1812.08345 FPSAC 2019, University of Ljubljana, Slovenia July 4, 2019 1 / 23

  2. Outline minuscule posets Auslander–Reiten quivers nilpotent endomorphisms of quiver representations promotion on reverse plane partitions 2 / 23

  3. A minuscule poset is defined by choosing a simply-laced Dynkin diagram and a minuscule vertex m . ¨ ¨ ¨ A n 1 2 n n D n 1 2 ¨ ¨ ¨ n ´ 2 n ´ 1 6 E 6 1 2 3 4 5 7 1 2 3 4 5 6 E 7 3 / 23

  4. 0 0 1 5 4 1 2 1 3 3 2 5 ρ 3 2 3 4 1 1 2 3 4 4 P A 4 , 3 P D 5 , 1 P D 5 , 4 A reverse plane partition is an order-reversing map ρ : P Ñ Z ě 0 . 4 / 23

  5. Theorem (Proctor ‘84) For any minuscule poset P , the generating function for reverse plane partitions on P is 1 q | ρ | “ ÿ ź 1 ´ q rk p x q ρ : P Ñ Z ě 0 P RPP p P q x P P where | ρ | : “ ř x P P ρ p x q and rk : P Ñ Z ě 1 is the rank function on P . Analogous identities for order filters of certain minuscule posets (Stanley ‘71, Hillman–Grassl ‘76, Gansner ‘81, Pak ‘01, Sulzgruber ‘17) Analogous identities for “skew shapes” (Morales–Pak–Panova ‘15, Naruse–Okada ‘18) 5 / 23

  6. � � � � � � Theorem (Proctor ‘84) For any minuscule poset P , the generating function for reverse plane partitions on P is 1 q | ρ | “ ÿ ź 1 ´ q rk p x q x P P ρ : P Ñ Z ě 0 P RPP p P q where | ρ | : “ ř x P P ρ p x q and rk : P Ñ Z ě 1 is the rank function on P . We will interpret this identity in terms of quiver representations. 4 k » fi – 1 fl 0 3 k » fi – 0 dim p V q “ 1211 k 2 2 fl 1 ” ı 1 1 1 k Q V a quiver a representation of Q dimension vector of V 6 / 23

  7. � � � � � � � � � � � � � � � � � � � � � Any quiver Q has an Auslander–Reiten quiver Γ p Q q whose vertices are the isomorphism classes of indecomposable representations of Q . 4 1111 τ 3 1110 0111 τ τ 2 1100 0110 0011 τ τ τ 1 1000 0100 0010 0001 Γ p Q q - the Auslander–Reiten quiver of Q Q There is a map τ called the Auslander–Reiten translation . The Auslander–Reiten translation partitions the indecomposables into τ -orbits . t vertices of Q u Ð Ñ t τ -orbits u 7 / 23

  8. � � � � � � � � � � � � � � � Lemma Given a Dynkin quiver Q and a minuscule vertex m, the Hasse quiver of the minscule poset P Q , m is isomorphic to the full subquiver of Γ p Q q on the representations supported at m. 4 1111 3 1110 0111 2 1100 0110 0011 1 1000 0100 0010 0001 Γ p Q q - the Auslander–Reiten quiver of Q Q Let C Q , m denote the category of all representations of Q , each of whose indecomposable summands is supported at m . 8 / 23

  9. � � � � � � � � � � V 4 4 V 4 φ 4 � V 3 3 V 3 φ 3 � V 2 2 V 2 φ 2 � V 1 1 V 1 φ 1 Let φ “ p φ i q i P NEnd p V q : “ t nilpotent endomorphisms of V u . Each φ i � λ i “ p λ i r q where partition λ i records the sizes of 1 ě ¨ ¨ ¨ ě λ i the Jordan blocks of φ i . JF p φ q : “ p λ 1 , . . . , λ n q the Jordan form data of φ Theorem (G.–Patrias–Thomas, ‘18) There is a unique maximum value of JF( ¨ ) on NEnd(V) with respect to componentwise dominance order, denoted by GenJF(V). Moreover, it is attained on a dense open subset of NEnd(V). 9 / 23

  10. Theorem (G.–Patrias–Thomas, ‘18) The objects of C Q , m are in bijection with RPP p P Q , m q via V ÞÑ ρ p V q – reverse plane partition from filling the τ -orbits of P Q , m with the Jordan block sizes in GenJF(V) 1111 3 5 4 1110 0 0111 1 5 3 3 ÞÑ 0110 1 0011 1 4 1 2 0010 2 3 1 V ÞÑ ρ p V q Q dim p V q “ 3585 GenJF p V q “ pp 3 q , p 4 , 1 q , p 5 , 3 q , p 5 qq 10 / 23

  11. Theorem (G.–Patrias–Thomas, ‘18) The objects of C Q , m are in bijection with RPP p P Q , m q . 1111 3 5 4 1110 0 0111 1 5 3 3 ÞÑ 0110 1 0011 1 4 1 2 0010 2 3 1 ÞÑ ρ p V q V Q GenJF p V q “ pp 3 q , p 4 , 1 q , p 5 , 3 q , p 5 qq Corollary 1 1 q | ρ | “ q dim p V q “ ÿ ÿ ź ź 1 ´ q dim p V i q “ 1 ´ q rk p x q ρ P RPP p P q V P C Q , m V i P ind p C Q , m q x P P 11 / 23

  12. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 0 1110 0 0111 1 0 0 ‚ 0 0 0110 1 0011 1 ‚ ‚ ‚ 0 0010 2 Γ p Q q V 12 / 23

  13. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 0 1110 0 0111 1 0 0 0110 1 0011 1 ‚ 0 1 0010 2 ‚ ‚ ‚ 0 V Γ p Q q 13 / 23

  14. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 0 1110 0 0111 1 0 0 ‚ 0 1 0110 1 0011 1 ‚ ‚ 3 ‚ 0010 2 V Γ p Q q 14 / 23

  15. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 0 1110 0 0111 1 0 2 0110 1 0011 1 ‚ 0 1 0010 2 ‚ ‚ ‚ 3 V Γ p Q q 15 / 23

  16. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 0 1110 0 0111 1 0 2 0110 1 0011 1 ‚ 4 1 0010 2 ‚ ‚ ‚ 3 V Γ p Q q 16 / 23

  17. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 0 1110 0 0111 1 0 2 ‚ 4 1 0110 1 0011 1 ‚ ‚ ‚ 2 0010 2 Γ p Q q V 17 / 23

  18. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 5 1110 0 0111 1 0 2 0110 1 0011 1 ‚ 4 1 ‚ ‚ ‚ 0010 2 2 Γ p Q q V 18 / 23

  19. � � � � � � � � � � � � � � � � � � � Algorithmic construction of ρ p V q Apply the following piecewise linear transformations “from right to left” in Γ p Q q to obtain ρ from V P C Q , m . if W is a summand of V , replace ρ i p V q with ρ i ` 1 p W q “ max W ă U ρ i p U q ` mult p W q , for each V 1 in the τ -orbit of W with W ă V 1 , replace ρ i p V 1 q with ρ i ` 1 p V 1 q “ max V 1 ă U ρ i p U q ` min U ă V 1 ρ i p U q ´ ρ i p V 1 q . 1111 3 5 1110 0 0111 1 5 3 0110 1 0011 1 ‚ 4 1 0010 2 ‚ ‚ ‚ 2 V Γ p Q q 19 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend