reducing ctl live model checking to first order logic
play

Reducing CTL-Live Model Checking to First-Order Logic Validity - PowerPoint PPT Presentation

Reducing CTL-Live Model Checking to First-Order Logic Validity Checking Amirhossein Vakili and Nancy A. Day Cheriton School of Computer Science 24 October 2014 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 1


  1. Reducing CTL-Live Model Checking to First-Order Logic Validity Checking Amirhossein Vakili and Nancy A. Day Cheriton School of Computer Science 24 October 2014 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 1 / 10

  2. Model Checking based on SAT/SMT Solving Safety Property: Is X reachable? Model Checker Model: X YES/NO ..... Fixpoint? SMT solver ..... ..... Focus on safety properties Iteratively calls the solver Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 2 / 10

  3. Our Result: CTL-Live Model Checking as FOL Validity Liveness Property: Is X always reachable? Model: Model Checker X YES/NO ..... Reduction SMT solver ..... ..... Focus on liveness properties Solved by first-order logic deduction techniques (e.g., SMT solvers) No need for abstraction or invariant generation Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 3 / 10

  4. CTL-Live CTL-Live includes CTL connectives that are defined using the least fixpoint operator of mu-calculus. Temporal part ::= π | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 ϕ ::= EX ϕ | AX ϕ | EF ϕ | AF ϕ ::= ϕ 1 EU ϕ 2 | ϕ 1 AU ϕ 2 Propositional part ::= P | ¬ π | π 1 ∨ π 2 π where P is a labelling predicate. Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 4 / 10

  5. CTL-Live CTL-Live includes CTL connectives that are defined using the least fixpoint operator of mu-calculus. Temporal part ::= π | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 ϕ ::= EX ϕ | AX ϕ | EF ϕ | AF ϕ ::= ϕ 1 EU ϕ 2 | ϕ 1 AU ϕ 2 Propositional part ::= P | ¬ π | π 1 ∨ π 2 π where P is a labelling predicate. In CTL-Live AF P ( EF ¬ P ) AU ( AX Q ) Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 4 / 10

  6. CTL-Live CTL-Live includes CTL connectives that are defined using the least fixpoint operator of mu-calculus. Temporal part ::= π | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 ϕ ::= EX ϕ | AX ϕ | EF ϕ | AF ϕ ::= ϕ 1 EU ϕ 2 | ϕ 1 AU ϕ 2 Propositional part ::= P | ¬ π | π 1 ∨ π 2 π where P is a labelling predicate. In CTL-Live Not In CTL-Live AF P ¬ ( AF P ) ( EF ¬ P ) AU ( AX Q ) AG P Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 4 / 10

  7. Symbolic Kripke Structures in FOL ... c = 4 c = 2 c = 0 c = 5 ... initial ... c = 3 c = 6 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 5 / 10

  8. Symbolic Kripke Structures in FOL ... c = 4 c = 2 c = 0 c = 5 ... initial ... c = 3 c = 6 S = { 0 , 1 , 2 , 3 , .. } state space S 0 ( c ) ⇔ c = 0 initial states c ′ = c + 2 ∨ c ′ = c + 3 N ( c , c ′ ) ⇔ next-state relation Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 5 / 10

  9. Symbolic Kripke Structures in FOL ... c = 4 c = 2 c = 0 c = 5 ... initial ... c = 3 c = 6 S = { 0 , 1 , 2 , 3 , .. } state space S 0 ( c ) ⇔ c = 0 initial states c ′ = c + 2 ∨ c ′ = c + 3 N ( c , c ′ ) ⇔ next-state relation Notation symbolic ( K ) | = c AF c > 3 [ AF c > 3] = { 0 , 1 , 2 , ... } Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 5 / 10

  10. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  11. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) State Space Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  12. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) State Space Y 1 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  13. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) State Space Y 1 Y 2 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  14. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) State Space Y 3 Y 1 Y 2 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  15. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) State Space Y 3 Y 1 Y 2 Y 4 Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  16. Intuition: States Satisfying AF P According to encoding of AF in mu-calculus, [ AF P ] is the smallest set Y that satisfies: (1) ∀ s • P ( s ) ⇒ Y ( s ) ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � (2) ∀ s • ⇒ Y ( s ) State Space Y 3 Y 1 Y 2 [ AF P ] Y 4 � [ AF P ] = where Θ = { Y s satisfying (1) , (2) } Y Y ∈ Θ Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 6 / 10

  17. Intuition: Model Checking AF P Model checking is about a subset relation, S 0 ⊆ [ AF P ]: � S 0 ⊆ Y Y ∈ Θ Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 7 / 10

  18. Intuition: Model Checking AF P Model checking is about a subset relation, S 0 ⊆ [ AF P ]: � S 0 ⊆ iff ∀ Y ∈ Θ • S 0 ⊆ Y Y Y ∈ Θ Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 7 / 10

  19. Intuition: Model Checking AF P Model checking is about a subset relation, S 0 ⊆ [ AF P ]: � S 0 ⊆ iff ∀ Y ∈ Θ • S 0 ⊆ Y Y Y ∈ Θ Higher-order universal quantifier Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 7 / 10

  20. Intuition: Model Checking AF P Model checking is about a subset relation, S 0 ⊆ [ AF P ]: � S 0 ⊆ iff ∀ Y ∈ Θ • S 0 ⊆ Y Y Y ∈ Θ Higher-order universal quantifier First-order logic formula Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 7 / 10

  21. Intuition: Model Checking AF P Model checking is about a subset relation, S 0 ⊆ [ AF P ]: � S 0 ⊆ iff ∀ Y ∈ Θ • S 0 ⊆ Y Y Y ∈ Θ Higher-order universal quantifier First-order logic formula Definition (FOL Validity) Γ | = Φ iff every interpretation that satisfies Γ also satisfies Φ. Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 7 / 10

  22. Intuition: Model Checking AF P Model checking is about a subset relation, S 0 ⊆ [ AF P ]: � S 0 ⊆ iff ∀ Y ∈ Θ • S 0 ⊆ Y Y Y ∈ Θ Higher-order universal quantifier First-order logic formula Definition (FOL Validity) Γ | = Φ iff every interpretation that satisfies Γ also satisfies Φ. Description of model ∀ s • P ( s ) ⇒ Y ( s ) + | = S 0 ⊆ Y ∀ s ′ • N ( s , s ′ ) ⇒ Y ( s ′ ) � � symbolic ( K ) ∀ s • ⇒ Y ( s ) Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 7 / 10

  23. Our Result Reduction Procedure: INPUT: symbolic ( K ) : symbolic representation of a Kripke structure. : a CTL-Live formula. ϕ OUTPUT: symbolic ( K ) � CTLL2FOL ( ϕ ) | = S 0 ⊆ ⌈ ϕ ⌉ Theorem (Reduction of CTL-Live Model Checking to FOL Validity) symbolic ( K ) | = c ϕ iff � symbolic ( K ) CTLL2FOL ( ϕ ) | = S 0 ⊆ ⌈ ϕ ⌉ Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 8 / 10

  24. Our Result Reduction Procedure: INPUT: symbolic ( K ) : symbolic representation of a Kripke structure. : a CTL-Live formula. ϕ OUTPUT: symbolic ( K ) � CTLL2FOL ( ϕ ) | = S 0 ⊆ ⌈ ϕ ⌉ Example : ∀ c • S 0 ( c ) ⇔ c = 0 ∀ c , c ′ • N ( c , c ′ ) ⇔ c ′ = c + 2 ∨ c ′ = c + 3 ∀ c • c > 3 ⇒ Y ( c ) ∀ c ′ • N ( c , c ′ ) ⇒ Y ( c ′ ) � � ∀ c • ⇒ Y ( c ) | = S 0 ⊆ Y Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 8 / 10

  25. Our Result Reduction Procedure: INPUT: symbolic ( K ) : symbolic representation of a Kripke structure. : a CTL-Live formula. ϕ OUTPUT: symbolic ( K ) � CTLL2FOL ( ϕ ) | = S 0 ⊆ ⌈ ϕ ⌉ Example : ∀ c • S 0 ( c ) ⇔ c = 0 ∀ c , c ′ • N ( c , c ′ ) ⇔ c ′ = c + 2 ∨ c ′ = c + 3 ∀ c • c > 3 ⇒ Y ( c ) ∀ c ′ • N ( c , c ′ ) ⇒ Y ( c ′ ) � � ∀ c • ⇒ Y ( c ) | = S 0 ⊆ Y Vakili and Day (U. of Waterloo) CTL-Live Model Checking in FOL 24 October 2014 8 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend