realizability games for the specification problem
play

Realizability games for the specification problem Mauricio Guillermo - PowerPoint PPT Presentation

G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Realizability games for the specification problem Mauricio Guillermo 2 , Etienne Miquey 1,2 1 Team r 2 (INRIA), PPS, Universit e


  1. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Semantics Intuition falsity value � A � : stacks, opponent to A truth value | A | : terms, player of A pole ⊥ ⊥ : processes, referee t ⋆ π ≻ p 0 ≻ · · · ≻ p n ∈ ⊥ ⊥ ? � ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction Truth value defined by orthogonality : ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} ´ Etienne Miquey Realizability games for the specification problem 8/ 39

  2. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Semantics Intuition falsity value � A � : stacks, opponent to A truth value | A | : terms, player of A pole ⊥ ⊥ : processes, referee t ⋆ π ≻ p 0 ≻ · · · ≻ p n ∈ ⊥ ⊥ ? � ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction Truth value defined by orthogonality : ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} ´ Etienne Miquey Realizability games for the specification problem 8/ 39

  3. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Semantics Intuition falsity value � A � : stacks, opponent to A truth value | A | : terms, player of A pole ⊥ ⊥ : processes, referee t ⋆ π ≻ p 0 ≻ · · · ≻ p n ∈ ⊥ ⊥ ? � ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction Truth value defined by orthogonality : ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} ´ Etienne Miquey Realizability games for the specification problem 8/ 39

  4. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Pole ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction : ∀ p , p ′ ∈ Λ c ⋆ Π : ( p ≻ p ′ ) ∧ ( p ′ ∈ ⊥ ⊥ ) ⇒ p ∈ ⊥ ⊥ Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  5. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Pole ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction : ∀ p , p ′ ∈ Λ c ⋆ Π : ( p ≻ p ′ ) ∧ ( p ′ ∈ ⊥ ⊥ ) ⇒ p ∈ ⊥ ⊥ Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  6. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Pole ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction : ∀ p , p ′ ∈ Λ c ⋆ Π : ( p ≻ p ′ ) ∧ ( p ′ ∈ ⊥ ⊥ ) ⇒ p ∈ ⊥ ⊥ Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  7. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Pole ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction : ∀ p , p ′ ∈ Λ c ⋆ Π : ( p ≻ p ′ ) ∧ ( p ′ ∈ ⊥ ⊥ ) ⇒ p ∈ ⊥ ⊥ Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  8. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Pole ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction : ∀ p , p ′ ∈ Λ c ⋆ Π : ( p ≻ p ′ ) ∧ ( p ′ ∈ ⊥ ⊥ ) ⇒ p ∈ ⊥ ⊥ Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  9. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Pole ⊥ ⊥ ⊂ Λ c ⋆ Π closed by anti-reduction : ∀ p , p ′ ∈ Λ c ⋆ Π : ( p ≻ p ′ ) ∧ ( p ′ ∈ ⊥ ⊥ ) ⇒ p ∈ ⊥ ⊥ Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  10. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Models ( M , ⊥ ⊥ ) Ground model M Truth value (player): ⊥ = { t ∈ Λ c : ∀ π ∈ � A � , t ⋆ π ∈ ⊥ | A | = � A � ⊥ ⊥} Falsity value (opponent): � A ⇒ B � = { t · π : t ∈ | A | ∧ π ∈ � B �} �∀ xA � = � n ∈ N � A { x := n }� F : N k →P (Π) � A { X := ˙ �∀ XA � = � F }� � ˙ F ( e 1 , ..., e k ) � = F ( � e 1 � , . . . , � e k � ) Notation t ∈ | A | = � A � ⊥ ⊥ t � A iff t � A iff t � A for all ⊥ ⊥ ´ Etienne Miquey Realizability games for the specification problem 9/ 39

  11. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Remarks Case ⊥ ⊥ = ∅ (degenerated model) Truth as in the standard model: � Λ if � A � = 1 | A | = ∅ if � A � = 0 Realizable ⇔ True in the standard model Case ⊥ ⊥ � = ∅ t ⋆ π ∈ ⊥ ⊥ ⇒ forall A , k π t � A Restriction to proof-like ´ Etienne Miquey Realizability games for the specification problem 10/ 39

  12. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Remarks Case ⊥ ⊥ = ∅ (degenerated model) Truth as in the standard model: � Λ if � A � = 1 | A | = ∅ if � A � = 0 Realizable ⇔ True in the standard model Case ⊥ ⊥ � = ∅ t ⋆ π ∈ ⊥ ⊥ ⇒ forall A , k π t � A Restriction to proof-like ´ Etienne Miquey Realizability games for the specification problem 10/ 39

  13. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Properties Adequacy � x 1 : A 1 , . . . , x k : A k ⊢ t : A ⇒ t [ t 1 / x 1 , . . . , t k / x k ] � A ∀ i ∈ [1 , k ]( t i � A i ) Realizing Peano axioms If PA 2 − ⊢ A , then there is a closed proof-like term t s.t. t � A . Witness extraction If t � ∃ N x A ( x ) and A ( x ) is atomic or decidable, then we can build a term u s.t. that ∀ π ∈ Π: t ⋆ u · π ≻ stop ⋆ n · π ∧ A ( n ) holds ´ Etienne Miquey Realizability games for the specification problem 11/ 39

  14. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Relativization Nat( x ) ≡ ∀ Z ( Z (0) ⇒ ∀ y ( Z ( y ) ⇒ Z ( s ( y ))) ⇒ Z ( x )) Proposition There is no t ∈ Λ c such that t � ∀ n . Nat ( n ) ´ Etienne Miquey Realizability games for the specification problem 12/ 39

  15. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Relativization Nat( x ) ≡ ∀ Z ( Z (0) ⇒ ∀ y ( Z ( y ) ⇒ Z ( s ( y ))) ⇒ Z ( x )) Proposition There is no t ∈ Λ c such that t � ∀ n . Nat ( n ) Fix: ∀ nat x A := ∀ x (Nat( x ) ⇒ A ) Obviously, λ x . x � ∀ nat x Nat( x ) ´ Etienne Miquey Realizability games for the specification problem 12/ 39

  16. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Relativization Nat( x ) ≡ ∀ Z ( Z (0) ⇒ ∀ y ( Z ( y ) ⇒ Z ( s ( y ))) ⇒ Z ( x )) Proposition There is no t ∈ Λ c such that t � ∀ n . Nat ( n ) Better : A , B ::= . . . | { e } ⇒ A �{ e } ⇒ A � = { ¯ n · π : � e � = n ∧ π ∈ � A �} ∀ N x A ( x ) ≡ ∀ x ( { x } ⇒ A ( x )) Let T be a storage operator. The following holds for any formula A ( x ): 1 λ x . x � ∀ nat x A ( x ) ⇒ ∀ N x A ( x ) 2 λ x . Tx � ∀ N x A ( x ) ⇒ ∀ nat x A ( x ) ´ Etienne Miquey Realizability games for the specification problem 12/ 39

  17. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our problem Specification of A Can we give a characterization of { t ∈ Λ c : t � A } ? Absoluteness Are arithmetical formulæ absolute for realizability models ( M , ⊥ ⊥ )? ´ Etienne Miquey Realizability games for the specification problem 13/ 39

  18. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion The specification problem ´ Etienne Miquey Realizability games for the specification problem 14/ 39

  19. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our leverage: the pole Two ways of building poles from any set P of processes. 1 goal-oriented : ⊥ := { p ∈ Λ c ⋆ Π : ∃ p ′ ∈ P , p ≻ p ′ } ⊥ 2 thread-oriented : th p = { p ′ ∈ Λ c ⋆ Π : p ≻ p ′ } Thread of p : th p ) c ≡ � � th c ⊥ ⊥ := ( p p ∈ P p ∈ P ´ Etienne Miquey Realizability games for the specification problem 15/ 39

  20. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our leverage: the pole Two ways of building poles from any set P of processes. 1 goal-oriented : ⊥ := { p ∈ Λ c ⋆ Π : ∃ p ′ ∈ P , p ≻ p ′ } ⊥ Proof: Let p 0 ∈ Λ ⋆ Π and ⊥ ⊥ 0 := { p ∈ Λ c ⋆ Π : p ≻ p 0 } . Let p 1 , p 2 ∈ Λ ⋆ Π be such that: p 1 ≻ p 2 and p 2 ∈ ⊥ ⊥ 0 ≡ p 2 ≻ p 0 . Then p 1 ≻ p 2 ≻ p 0 , thus p 1 ∈ ⊥ ⊥ 0 . � ´ Etienne Miquey Realizability games for the specification problem 15/ 39 2 thread-oriented :

  21. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our leverage: the pole Two ways of building poles from any set P of processes. 1 goal-oriented : ⊥ := { p ∈ Λ c ⋆ Π : ∃ p ′ ∈ P , p ≻ p ′ } ⊥ Proof: Let p 0 ∈ Λ ⋆ Π and ⊥ ⊥ 0 := { p ∈ Λ c ⋆ Π : p ≻ p 0 } . Let p 1 , p 2 ∈ Λ ⋆ Π be such that: p 1 ≻ p 2 and p 2 ∈ ⊥ ⊥ 0 ≡ p 2 ≻ p 0 . Then p 1 ≻ p 2 ≻ p 0 , thus p 1 ∈ ⊥ ⊥ 0 . � ´ Etienne Miquey Realizability games for the specification problem 15/ 39 2 thread-oriented :

  22. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our leverage: the pole 2 thread-oriented : th p = { p ′ ∈ Λ c ⋆ Π : p ≻ p ′ } Thread of p : th p ) c ≡ � � th c ⊥ ⊥ := ( p p ∈ P p ∈ P ´ Etienne Miquey Realizability games for the specification problem 15/ 39

  23. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our leverage: the pole 2 thread-oriented : th p = { p ′ ∈ Λ c ⋆ Π : p ≻ p ′ } Thread of p : th p ) c ≡ � � th c ⊥ ⊥ := ( p p ∈ P p ∈ P Proof: Let p 0 ∈ Λ ⋆ Π and ⊥ 0 := th c ⊥ p 0 ≡ { p ∈ Λ c ⋆ Π : p 0 �≻ p } . Let p 1 , p 2 ∈ Λ ⋆ Π be such that: p 1 ≻ p 2 and p 2 ∈ ⊥ ⊥ 0 ≡ p 0 �≻ p 2 . Assume p 0 ≻ p 1 , then p 0 ≻ p 1 ≻ p 2 / ∈ ⊥ ⊥ 0 Absurd ! � ´ Etienne Miquey Realizability games for the specification problem 15/ 39

  24. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Our leverage: the pole 2 thread-oriented : th p = { p ′ ∈ Λ c ⋆ Π : p ≻ p ′ } Thread of p : th p ) c ≡ � � th c ⊥ ⊥ := ( p p ∈ P p ∈ P Proof: Let p 0 ∈ Λ ⋆ Π and ⊥ 0 := th c ⊥ p 0 ≡ { p ∈ Λ c ⋆ Π : p 0 �≻ p } . Let p 1 , p 2 ∈ Λ ⋆ Π be such that: p 1 ≻ p 2 and p 2 ∈ ⊥ ⊥ 0 ≡ p 0 �≻ p 2 . Assume p 0 ≻ p 1 , then p 0 ≻ p 1 ≻ p 2 / ∈ ⊥ ⊥ 0 Absurd ! � ´ Etienne Miquey Realizability games for the specification problem 15/ 39

  25. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) iff ? By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  26. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) iff ? By definition: S ∈P (Π) � ˙ S ⇒ ˙ �∀ X . ( X ⇒ X ) � = � S � u ∈ | ˙ π ∈ � ˙ = � S ∈P (Π) { u · π : S | ∧ S �} u � ˙ = � S ∈P (Π) { u · π : ∧ π ∈ S } S Proof: ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  27. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: S ∈P (Π) � ˙ S ⇒ ˙ �∀ X . ( X ⇒ X ) � = � S � u ∈ | ˙ π ∈ � ˙ = � S ∈P (Π) { u · π : S | ∧ S �} u � ˙ = � S ∈P (Π) { u · π : ∧ π ∈ S } S Proof: ( ⇐ ) Obvious. ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  28. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ( ⇒ ) Assume t � ∀ X ( X ⇐ X ) and fix u ∈ Λ and π ∈ Π. goal-oriented : 1 ⊥ ⊥ := { p : p ≻ u ⋆ π } Amounts to: u · π ∈ �∀ X . ( X ⇒ X ) � ? Define S := { π } . We check that: π ∈ S u � ˙ S ⇔ ∀ ρ ∈ S , u ⋆ ρ ∈ ⊥ ⊥ ⇔ u ⋆ π ∈ ⊥ ⊥ Thus t ⋆ u · π ∈ ⊥ ⊥ and t ⋆ u · π ≻ u ⋆ π . � ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  29. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ( ⇒ ) Assume t � ∀ X ( X ⇐ X ) and fix u ∈ Λ and π ∈ Π. goal-oriented : 1 ⊥ ⊥ := { p : p ≻ u ⋆ π } Amounts to: u · π ∈ �∀ X . ( X ⇒ X ) � ? Define S := { π } . We check that: π ∈ S u � ˙ S ⇔ ∀ ρ ∈ S , u ⋆ ρ ∈ ⊥ ⊥ ⇔ u ⋆ π ∈ ⊥ ⊥ Thus t ⋆ u · π ∈ ⊥ ⊥ and t ⋆ u · π ≻ u ⋆ π . � ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  30. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ( ⇒ ) Assume t � ∀ X ( X ⇐ X ) and fix u ∈ Λ and π ∈ Π. goal-oriented : 1 ⊥ ⊥ := { p : p ≻ u ⋆ π } Amounts to: u · π ∈ �∀ X . ( X ⇒ X ) � ? Define S := { π } . We check that: π ∈ S u � ˙ S ⇔ ∀ ρ ∈ S , u ⋆ ρ ∈ ⊥ ⊥ ⇔ u ⋆ π ∈ ⊥ ⊥ Thus t ⋆ u · π ∈ ⊥ ⊥ and t ⋆ u · π ≻ u ⋆ π . � ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  31. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ( ⇒ ) Assume t � ∀ X ( X ⇐ X ) and fix u ∈ Λ and π ∈ Π. thread-oriented : 2 ⊥ := th c ⊥ t ⋆ u · π ≡ { p ∈ Λ c ⋆ Π : t ⋆ u · π �≻ p } . Obviously, t ⋆ u · π / ∈ ⊥ ⊥ . Thus u · π / ∈ �∀ X . ( X ⇒ X ) � . Defining S := { π } , we deduce that : u � ˙ S ⇔ ∃ ρ ∈ S , u ⋆ ρ / ∈ ⊥ ⊥ ⇔ u ⋆ π / ∈ ⊥ ⊥ ⇔ t ⋆ u · π ≻ u ⋆ π � ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  32. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ( ⇒ ) Assume t � ∀ X ( X ⇐ X ) and fix u ∈ Λ and π ∈ Π. thread-oriented : 2 ⊥ := th c ⊥ t ⋆ u · π ≡ { p ∈ Λ c ⋆ Π : t ⋆ u · π �≻ p } . Obviously, t ⋆ u · π / ∈ ⊥ ⊥ . Thus u · π / ∈ �∀ X . ( X ⇒ X ) � . Defining S := { π } , we deduce that : u � ˙ S ⇔ ∃ ρ ∈ S , u ⋆ ρ / ∈ ⊥ ⊥ ⇔ u ⋆ π / ∈ ⊥ ⊥ ⇔ t ⋆ u · π ≻ u ⋆ π � ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  33. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example: Identity-like t � ∀ X . ( X ⇒ X ) t ⋆ u · π ≻ u ⋆ π iff By definition: u � ˙ �∀ X . ( X ⇒ X ) � = � S ∈P (Π) { u · π : S ∧ π ∈ S } Proof: ( ⇒ ) Assume t � ∀ X ( X ⇐ X ) and fix u ∈ Λ and π ∈ Π. thread-oriented : 2 ⊥ := th c ⊥ t ⋆ u · π ≡ { p ∈ Λ c ⋆ Π : t ⋆ u · π �≻ p } . Obviously, t ⋆ u · π / ∈ ⊥ ⊥ . Thus u · π / ∈ �∀ X . ( X ⇒ X ) � . Defining S := { π } , we deduce that : u � ˙ S ⇔ ∃ ρ ∈ S , u ⋆ ρ / ∈ ⊥ ⊥ ⇔ u ⋆ π / ∈ ⊥ ⊥ ⇔ t ⋆ u · π ≻ u ⋆ π � ´ Etienne Miquey Realizability games for the specification problem 16/ 39

  34. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ X . ( X ⇒ X ) ⇒ X ⇒ X iff ??? t 0 ⋆ κ s · κ z · π ≻ κ s ⋆ t 1 · π t 1 ⋆ π ≻ κ s ⋆ t 2 · π . . . t i ⋆ π ≻ κ s ⋆ t i +1 · π . . . t s ⋆ π ≻ κ z ⋆ π ´ Etienne Miquey Realizability games for the specification problem 17/ 39

  35. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ X . ( X ⇒ X ) ⇒ X ⇒ X iff ??? t 0 ⋆ κ s · κ z · π ≻ κ s ⋆ t 1 · π t 1 ⋆ π ≻ κ s ⋆ t 2 · π . . . t i ⋆ π ≻ κ s ⋆ t i +1 · π . . . t s ⋆ π ≻ κ z ⋆ π ´ Etienne Miquey Realizability games for the specification problem 17/ 39

  36. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ X . ( X ⇒ X ) ⇒ X ⇒ X iff ??? t 0 ⋆ κ s · κ z · π ≻ κ s ⋆ t 1 · π t 1 ⋆ π ≻ κ s ⋆ t 2 · π . . . t i ⋆ π ≻ κ s ⋆ t i +1 · π . . . t s ⋆ π ≻ κ z ⋆ π ⊥ 0 := ( th ( p 0 )) c and � X � = { π } : 0 Define p 0 := t 0 ⋆ κ s · κ z · π , ⊥ � κ z � 0 X implies p 0 ≻ κ z ⋆ π � κ z � 0 X implies κ s � 0 X ⇒ X and p 0 ≻ κ s ⋆ t 1 · π ´ Etienne Miquey Realizability games for the specification problem 17/ 39

  37. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ X . ( X ⇒ X ) ⇒ X ⇒ X iff ??? t 0 ⋆ κ s · κ z · π ≻ κ s ⋆ t 1 · π t 1 ⋆ π ≻ κ s ⋆ t 2 · π . . . t i ⋆ π ≻ κ s ⋆ t i +1 · π . . . t s ⋆ π ≻ κ z ⋆ π ⊥ 0 := ( th ( p 0 )) c and � X � = { π } : 0 Define p 0 := t 0 ⋆ κ s · κ z · π , ⊥ � κ z � 0 X implies p 0 ≻ κ z ⋆ π � κ z � 0 X implies κ s � 0 X ⇒ X and p 0 ≻ κ s ⋆ t 1 · π ´ Etienne Miquey Realizability games for the specification problem 17/ 39

  38. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ X . ( X ⇒ X ) ⇒ X ⇒ X iff ??? t 0 ⋆ κ s · κ z · π ≻ κ s ⋆ t 1 · π t 1 ⋆ π ≻ κ s ⋆ t 2 · π . . . t i ⋆ π ≻ κ s ⋆ t i +1 · π . . . t s ⋆ π ≻ κ z ⋆ π j ∈ [0 , i ] ( th ( p j )) c and � X � = { π } : Define p i := t i ⋆ π , ⊥ ⊥ i := � i � κ z � i X implies p i ≻ κ z ⋆ π � κ z � i X implies κ s � i X ⇒ X and p i ≻ κ s ⋆ t i +1 · π ´ Etienne Miquey Realizability games for the specification problem 17/ 39

  39. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ X . ( X ⇒ X ) ⇒ X ⇒ X iff ??? t 0 ⋆ κ s · κ z · π ≻ κ s ⋆ t 1 · π t 1 ⋆ π ≻ κ s ⋆ t 2 · π . . . t i ⋆ π ≻ κ s ⋆ t i +1 · π . . . t s ⋆ π ≻ κ z ⋆ π j ∈ [0 , i ] ( th ( p j )) c and � X � = { π } : Define p i := t i ⋆ π , ⊥ ⊥ i := � i � κ z � i X implies p i ≻ κ z ⋆ π � κ z � i X implies κ s � i X ⇒ X and p i ≻ κ s ⋆ t i +1 · π Termination: i ∈ N ( th ( p i )) c , get a If ∀ i ∈ N ( κ z � i X ), define ⊥ ⊥ ∞ := � contradiction. ´ Etienne Miquey Realizability games for the specification problem 17/ 39

  40. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ XY . ( X ⇒ Y ) ⇒ X ⇒ Y iff ??? t 0 ⋆ κ f · κ x · π ≻ κ f ⋆ t 1 · π t 1 ⋆ π ′ ≻ κ f ⋆ t 2 · π . . . t i ⋆ π ′ ≻ κ f ⋆ t i +1 · π . . . t s ⋆ π ′ κ x ⋆ π ′ ≻ (Same proof) ´ Etienne Miquey Realizability games for the specification problem 18/ 39

  41. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion t 0 � ∀ XY . ( X ⇒ Y ) ⇒ X ⇒ Y iff ??? t 0 ⋆ κ f · κ x · π ≻ κ f ⋆ t 1 · π t 1 ⋆ π ′ ≻ κ f ⋆ t 2 · π . . . t i ⋆ π ′ ≻ κ f ⋆ t i +1 · π . . . t s ⋆ π ′ κ x ⋆ π ′ ≻ (Same proof) ´ Etienne Miquey Realizability games for the specification problem 18/ 39

  42. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Arithmetical formulæ by hand Depth Player Game θ ⋆ k �·� · π �·� (1) j �·� ∃ 2 1 1 2 · · · 2 k �·� ⋆ m � 1 � · ξ � 1 � · π �·� k �·� ⋆ m � 2 � · ξ � 2 � · π �·� k �·� ⋆ m k �·� · ξ j �·� · π �·� (2) · · · ∀ ξ k �·� ⋆ p k �·� · k j �·� · π j �·� (3) ξ � 1 � ⋆ p � 1 � · k � 1 � · π � 1 � ξ � 2 � ⋆ p � 2 � · k � 2 � · π � 2 � ∃ 1 3 j � 21 � 2 (4) k � 2 � ⋆ m � 21 � · ξ � 21 � · π � 2 � k � 2 � ⋆ m j � 2 � · ξ j � 2 � · π � 2 � k � 2 � ⋆ m � 22 � · ξ � 22 � · π � 2 � . . . . ∀ . . . . . . . . . . . . ξ ˚ σ ⋆ p ˚ σ · k ˚ σ · π ˚ . . σ · · · · · · 1 j ˚ i σ ∃ k ˚ σ ⋆ m ˚ σ · 1 · ξ ˚ σ · 1 · π ˚ k ˚ σ ⋆ m ˚ σ · ξ ˚ σ · π ˚ σ · j ˚ σ · j ˚ σ σ k ˚ σ ⋆ m ˚ σ · i · ξ ˚ σ · i · π ˚ σ k ∀ σ ⋆ p ˚ σ · k ˚ σ · π ˚ (2n-1) ξ ˚ σ · 1 ⋆ p ˚ σ · 1 · k ˚ σ · 1 · π ˚ ξ ˚ σ · j ˚ σ · j ˚ σ · j ˚ σ · 1 σ · j ˚ σ · i ⋆ p ˚ σ · i · k ˚ σ · i · π ˚ σ ξ ˚ σ · i k ∃ (2n) k ˚ σ · i ⋆ π ˚ σ · i ∀ X ´ Etienne Miquey Realizability games for the specification problem 19/ 39

  43. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Advertisement Problem You want to specify A . Methodology: � requirement: some intuition... 1 direct-style : define the good poles, 2 indirect-style : try the thread method, 3 induction-style : define a game ´ Etienne Miquey Realizability games for the specification problem 20/ 39

  44. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Advertisement Problem You want to specify A . Methodology: � requirement: some intuition... 1 direct-style : define the good poles, 2 indirect-style : try the thread method, 3 induction-style : define a game ´ Etienne Miquey Realizability games for the specification problem 20/ 39

  45. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion A first notion of game ´ Etienne Miquey Realizability games for the specification problem 21/ 39

  46. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Coquand’s game Arithmetical formula Φ 2 h : ∃ x 1 ∀ y 1 . . . ∃ x h ∀ y h f ( � x h , � y h ) = 0 Rules: Players : Eloise ∃ and Abelard ∀ . Moves : - at his turn, each player instantiates his variable - Eloise allowed to backtrack Final position : evaluation of f ( � m h , � n h ) = 0 : true : Eloise wins false : game continues Abelard wins if the game never ends Winning strategy Way of playing that ensures the victory, independently of the opponent moves. ´ Etienne Miquey Realizability games for the specification problem 22/ 39

  47. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Coquand’s game Arithmetical formula Φ 2 h : ∃ x 1 ∀ y 1 . . . ∃ x h ∀ y h f ( � x h , � y h ) = 0 Rules: Players : Eloise ∃ and Abelard ∀ . Moves : - at his turn, each player instantiates his variable - Eloise allowed to backtrack Final position : evaluation of f ( � m h , � n h ) = 0 : true : Eloise wins false : game continues Abelard wins if the game never ends Winning strategy Way of playing that ensures the victory, independently of the opponent moves. ´ Etienne Miquey Realizability games for the specification problem 22/ 39

  48. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion The need of backtrack f ( m , n , p ) = 0 := ( n > 0 ∧ Halt ( m , n )) ∨ ( n = 0 ∧ ¬ Halt ( m , p )) the m th Turing machine stops before n steps Halt ( m , n ) := Formula ∀ m ∃ n ∀ p ( f ( m , n , p ) = 0) Winning strategy ? Abelard plays the code m of a Turing machine M . Eloise chooses to play n = 0 (” M never stops ”) Abelard answers a given number of steps p Eloise checks whether M stops before p steps: either M is still running after p steps : � Eloise wins. either M stops before p steps : � Eloise backtracks and plays p instead of 0 (“ M stops before p steps ”) ´ Etienne Miquey Realizability games for the specification problem 23/ 39

  49. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion The need of backtrack f ( m , n , p ) = 0 := ( n > 0 ∧ Halt ( m , n )) ∨ ( n = 0 ∧ ¬ Halt ( m , p )) the m th Turing machine stops before n steps Halt ( m , n ) := Formula ∀ m ∃ n ∀ p ( f ( m , n , p ) = 0) Winning strategy : Abelard plays the code m of a Turing machine M . Eloise chooses to play n = 0 (” M never stops ”) Abelard answers a given number of steps p Eloise checks whether M stops before p steps: either M is still running after p steps : � Eloise wins. either M stops before p steps : � Eloise backtracks and plays p instead of 0 (“ M stops before p steps ”) ´ Etienne Miquey Realizability games for the specification problem 23/ 39

  50. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula ∃ x ∀ y ∃ z ( x · y = 2 · z ) Player Action Position Start P 0 = ( · , · , · ) ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  51. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula ∀ y ∃ z (1 · y = 2 · z ) Player Action Position Start P 0 = ( · , · , · ) ∃ x := 1 P 1 = (1 , · , · ) ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  52. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula ∃ z (1 = 2 · z ) Player Action Position Start P 0 = ( · , · , · ) ∃ x := 1 P 1 = (1 , · , · ) ∀ y := 1 P 2 = (1 , 1 , · ) ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  53. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula ∀ y ∃ z (2 · y = 2 · z ) Player Action Position Start P 0 = ( · , · , · ) ∃ x := 1 P 1 = (1 , · , · ) ∀ y := 1 P 2 = (1 , 1 , · ) ∃ P 3 = (2 , · , · ) backtrack to P 0 + x := 2 ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  54. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula ∃ z (2 = 2 · z ) Player Action Position Start P 0 = ( · , · , · ) ∃ x := 1 P 1 = (1 , · , · ) ∀ y := 1 P 2 = (1 , 1 , · ) ∃ P 3 = (2 , · , · ) backtrack to P 0 + x := 2 P 4 = (2 , 1 , · ) ∀ y := 1 ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  55. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula 2 = 2 Player Action Position Start P 0 = ( · , · , · ) P 1 = (1 , · , · ) ∃ x := 1 P 2 = (1 , 1 , · ) ∀ y := 1 ∃ backtrack to P 0 + x := 2 P 3 = (2 , · , · ) ∀ y := 1 P 4 = (2 , 1 , · ) ∃ z := 1 P 5 = (2 , 1 , 1) ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  56. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula 2 = 2 Player Action Position Start P 0 = ( · , · , · ) P 1 = (1 , · , · ) ∃ x := 1 P 2 = (1 , 1 , · ) ∀ y := 1 ∃ backtrack to P 0 + x := 2 P 3 = (2 , · , · ) ∀ y := 1 P 4 = (2 , 1 , · ) ∃ z := 1 P 5 = (2 , 1 , 1) evaluation ∃ wins ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  57. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Example Formula 2 = 2 Player Action Position Start P 0 = ( · , · , · ) P 1 = (1 , · , · ) ∃ x := 1 P 2 = (1 , 1 , · ) ∀ y := 1 ∃ backtrack to P 0 + x := 2 P 3 = (2 , · , · ) ∀ y := 1 P 4 = (2 , 1 , · ) ∃ z := 1 P 5 = (2 , 1 , 1) evaluation ∃ wins History H := � n P n ´ Etienne Miquey Realizability games for the specification problem 24/ 39

  58. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 0 : deductive system Rules: If there exists ( � m h , � n h ) ∈ H such that M � f ( � m h , � n h ) = 0: Win H ∈ W 0 Φ For all i < h , ( � m i , � n i ) ∈ H and m ∈ N : n i · n ) } ∈ W 0 H ∪ { ( � m i · m , � ∀ n ∈ N Φ Play H ∈ W 0 Φ ´ Etienne Miquey Realizability games for the specification problem 25/ 39

  59. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ ≡ ∃ N x 1 ∀ N y 1 . . . ∃ N x h ∀ y h ( f ( � x h , � y h ) = 0) ≡ ∀ X 1 ( ∀ N x 1 ( ∀ N y 1 Φ 1 ⇒ X 1 ) ⇒ X 1 ) ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  60. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ ≡ ∃ N x 1 ∀ N y 1 . . . ∃ N x h ∀ y h ( f ( � x h , � y h ) = 0) Φ 0 ≡ ∀ X 1 ( ∀ N x 1 ( ∀ N y 1 Φ 1 ⇒ X 1 ) ⇒ X 1 ) Φ i − 1 ≡ ∀ X i ( ∀ N x i ( ∀ N y i Φ i ⇒ X i ) ⇒ X i ) Φ h ≡ ∀ W ( W ( f ( � x h , � y h )) ⇒ W (0)) ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  61. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ 0 ≡ ∀ X 1 ( ∀ N x 1 ( ∀ N y 1 Φ 1 ⇒ X 1 ) ⇒ X 1 ) Φ i − 1 ≡ ∀ X i ( ∀ N x i ( ∀ N y i Φ i ⇒ X i ) ⇒ X i ) Φ h ≡ ∀ W ( W ( f ( � x h , � y h )) ⇒ W (0)) Realizability � A ⇒ B � = { u · π : u ∈ | A | ∧ π ∈ � B �} �∀ N xA ( x ) � = � n ∈ N { n · π : π ∈ � A ( n ) �} ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  62. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ 0 ≡ ∀ X 1 ( ∀ N x 1 ( ∀ N y 1 Φ 1 ⇒ X 1 ) ⇒ X 1 ) Start : Eloise proposes t 0 to defend Φ 0 Abelard proposes u 0 · π 0 to attack Φ 0 move p i ( ∃ -position) history 0 t 0 ⋆ u 0 · π 0 H 0 := { ( ∅ , ∅ , u 0 , π 0 ) } ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  63. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ 0 ≡ ∀ X 1 ( ∀ N x 1 ( ∀ N y 1 Φ 1 ⇒ X 1 ) ⇒ X 1 ) move p i ( ∃ -position) history 0 t 0 ⋆ u 0 · π 0 H 0 := { ( ∅ , ∅ , u 0 , π 0 ) } Eloise reduces p 0 until p 0 ≻ u 0 ⋆ m 1 · t 1 · π 0 � she can decide to play ( m 1 , t 1 ) and ask for Abelard’s answer � Abelard must give n 1 · u ′ · π ′ . ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  64. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ 0 ≡ ∀ X 1 ( ∀ N x 1 ( ∀ N y 1 Φ 1 ⇒ X 1 ) ⇒ X 1 ) move p i ( ∃ -position) history 0 t 0 ⋆ u 0 · π 0 H 0 := { ( ∅ , ∅ , u 0 , π 0 ) } 1 t 1 ⋆ n 1 · u 1 · π 1 H 1 := { ( m 1 , n 1 , u 1 , π 1 ) } ∪ H 0 Eloise reduces p 0 until p 0 ≻ u 0 ⋆ m 1 · t 1 · π 0 � she can decide to play ( m 1 , t 1 ) and ask for Abelard’s answer � Abelard must give n 1 · u ′ · π ′ . ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  65. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ i − 1 ≡ ∀ X i ( ∀ N x i ( ∀ N y i Φ i ⇒ X i ) ⇒ X i ) move p i ( ∃ -position) history 1 t 1 ⋆ n 1 · u 1 · π 1 H 1 := { ( m 1 , n 1 , u 1 , π 1 ) } ∪ H 0 . . . . . . . . . t i ⋆ n i · u i · π i H i := { ( m i , n i , u i , π i ) } ∪ H i − 1 i Eloise reduces p i until p i ≻ u ⋆ m · t · π with ( � m j , � n j , u , π ) ∈ H j where j < h . � she can decide to play ( m i +1 , t i +1 ) � Abelard must give n i · u ′ · π ′ . ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  66. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : playing with realizability Formulæ structure Φ h ≡ ∀ W ( W ( f ( � x h , � y h )) ⇒ W (0)) move p i ( ∃ -position) history 1 t 1 ⋆ n 1 · u 1 · π 1 H 1 := { ( m 1 , n 1 , u 1 , π 1 ) } ∪ H 0 . . . . . . . . . t i ⋆ n i · u i · π i H i := { ( m i , n i , u i , π i ) } ∪ H i − 1 i Eloise reduces p i until p i ≻ u ⋆ m · t · π with ( � m j , � n j , u , π ) ∈ H j where j < h . � she can decide to play ( m i +1 , t i +1 ) � Abelard must give n i · u ′ · π ′ . p i ≻ u ⋆ π with ( � m h , � n h , u , π ) ∈ H j � she wins iff M | = f ( � m h , � n h ) = 0. ´ Etienne Miquey Realizability games for the specification problem 26/ 39

  67. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : formal definition if ∃ ( � m h , � n h , u , π ) ∈ H s.t. p ≻ u ⋆ π and M � f ( � m h , � n h ) = 0 : Win � p , H � ∈ W 1 Φ for every ( � m i , � n i , u , π ) ∈ H , m ∈ N s.t. p ≻ u ⋆ m · t · π : � t ⋆ n · u ′ · π ′ , H ∪ { ( � n i · n , u ′ , π ′ ) }� ∈ W 1 ∀ ( n ′ , u ′ , π ′ ) m i · m , � Φ Play � p , H � ∈ W 1 Φ Winning strategy t ∈ Λ c s.t. for any handle ( u , π ) ∈ Λ × Π : � t ⋆ u · π, { ( ∅ , ∅ , u , π ) }� ∈ W 1 Φ ´ Etienne Miquey Realizability games for the specification problem 27/ 39

  68. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 1 : formal definition if ∃ ( � m h , � n h , u , π ) ∈ H s.t. p ≻ u ⋆ π and M � f ( � m h , � n h ) = 0 : Win � p , H � ∈ W 1 Φ for every ( � m i , � n i , u , π ) ∈ H , m ∈ N s.t. p ≻ u ⋆ m · t · π : � t ⋆ n · u ′ · π ′ , H ∪ { ( � n i · n , u ′ , π ′ ) }� ∈ W 1 ∀ ( n ′ , u ′ , π ′ ) m i · m , � Φ Play � p , H � ∈ W 1 Φ Winning strategy t ∈ Λ c s.t. for any handle ( u , π ) ∈ Λ × Π : � t ⋆ u · π, { ( ∅ , ∅ , u , π ) }� ∈ W 1 Φ ´ Etienne Miquey Realizability games for the specification problem 27/ 39

  69. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Specification result Adequacy If t is a winning strategy for G 1 Φ , then t � Φ Proof (sketch): - play a match with stacks from falsity value, - conclude by anti-reduction. ´ Etienne Miquey Realizability games for the specification problem 28/ 39

  70. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Specification result Adequacy If t is a winning strategy for G 1 Φ , then t � Φ Proof (sketch): - play a match with stacks from falsity value, - conclude by anti-reduction. Completeness of G 1 If the calculus is deterministic and substitutive, then if t � Φ then t is a winning strategy for the game G 1 Φ Proof (sketch): by contradiction - substitute Abelard’s winning answers along the thread scheme, - reach a winning position anyway. ´ Etienne Miquey Realizability games for the specification problem 28/ 39

  71. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Specification result Adequacy If t is a winning strategy for G 1 Φ , then t � Φ Proof (sketch): - play a match with stacks from falsity value, - conclude by anti-reduction. Completeness of G 1 If the calculus is deterministic and substitutive , then if t � Φ then t is a winning strategy for the game G 1 Φ Proof (sketch): by contradiction - substitute Abelard’s winning answers along the thread scheme, - reach a winning position anyway. ´ Etienne Miquey Realizability games for the specification problem 28/ 39

  72. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion The general case ´ Etienne Miquey Realizability games for the specification problem 29/ 39

  73. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Loosing the substition quote quote ⋆ ϕ · t · π ≻ t ⋆ n ϕ · π the calculus is no longer substitutive there are some wild realizers which are not winning strategies! Consider Φ ≤ ≡ ∃ N x ∀ N y ( x ≤ y ) and t ≤ s.t. : t ≤ ⋆ u · π ≻ T 0 ⋆ π ≻ u ⋆ 0 · T 1 · π and : � � ⋆ π ′ if u ′ ≡ T 0 and π ′ ≡ π T 1 ⋆ n · u ′ · π ′ ≻ u ′ ⋆ π ′ otherwise ´ Etienne Miquey Realizability games for the specification problem 30/ 39

  74. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Loosing the substition quote quote ⋆ ϕ · t · π ≻ t ⋆ n ϕ · π the calculus is no longer substitutive there are some wild realizers which are not winning strategies! Consider Φ ≤ ≡ ∃ N x ∀ N y ( x ≤ y ) and t ≤ s.t. : t ≤ ⋆ u · π ≻ T 0 ⋆ π ≻ u ⋆ 0 · T 1 · π and : � � ⋆ π ′ if u ′ ≡ T 0 and π ′ ≡ π T 1 ⋆ n · u ′ · π ′ ≻ u ′ ⋆ π ′ otherwise ´ Etienne Miquey Realizability games for the specification problem 30/ 39

  75. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Loosing the substition quote quote ⋆ ϕ · t · π ≻ t ⋆ n ϕ · π the calculus is no longer substitutive there are some wild realizers which are not winning strategies! Consider Φ ≤ ≡ ∃ N x ∀ N y ( x ≤ y ) and t ≤ s.t. : t ≤ ⋆ u · π ≻ T 0 ⋆ π ≻ u ⋆ 0 · T 1 · π and : � � ⋆ π ′ if u ′ ≡ T 0 and π ′ ≡ π T 1 ⋆ n · u ′ · π ′ ≻ u ′ ⋆ π ′ otherwise � Idea : I’ve already been there ... ´ Etienne Miquey Realizability games for the specification problem 30/ 39

  76. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 2 : non-substitutive case � Idea : I’ve already been there... if ∃ ( � m h , � n h , u , π ) ∈ H s.t. p ≻ u ⋆ π and M � f ( � m h , � n h ) = 0 : Win � p , H � ∈ W 1 Φ for every ( � m i , � n i , u , π ) ∈ H , m ∈ N s.t. p ≻ u ⋆ m · t · π : � t ⋆ n · u ′ · π ′ , H ∪ { ( � n i · n , u ′ , π ′ ) }� ∈ W 1 ∀ ( n ′ , u ′ , π ′ ) m i · m , � Φ Play � p , H � ∈ W 1 Φ ´ Etienne Miquey Realizability games for the specification problem 31/ 39

  77. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion G 2 : non-substitutive case � Idea : I’ve already been there... if ∃ ( � m h , � n h , u , π ) ∈ H , ∃ p ∈ P s.t. p ≻ u ⋆ π and M � f ( � m h , � n h ) = 0 : Win � P , H � ∈ W 2 Φ for every ( � m i , � n i , u , π ) ∈ H , m ∈ N s.t. ∃ p ∈ P , p ≻ u ⋆ m · t · π : �{ t ⋆ n · u ′ · π ′ } ∪ P � , H ∪ { ( � n i · n , u ′ , π ′ ) } ∈ W 2 ∀ ( n ′ , u ′ , π ′ ) m i · m , � Φ P � P , H � ∈ W 2 Φ ´ Etienne Miquey Realizability games for the specification problem 31/ 39

  78. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Specification result Adequacy If t is a winning strategy for G 2 Φ , then t � Φ Proof (sketch): - play a match with stacks from falsity value, - conclude by anti-reduction. ´ Etienne Miquey Realizability games for the specification problem 32/ 39

  79. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Specification result Adequacy If t is a winning strategy for G 2 Φ , then t � Φ Proof (sketch): - play a match with stacks from falsity value, - conclude by anti-reduction. Completeness of G 2 If t � Φ then t is a winning strategy for the game G 2 Φ Proof (sketch): by contradiction, - build an increasing sequence � P i , H i � using ∀ winning answers, p ∈ P ∞ th ( p )) c , - define ⊥ ⊥ := ( � - reach a contradiction. ´ Etienne Miquey Realizability games for the specification problem 32/ 39

  80. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Consequences Proposition : Uniform winning strategy There exists a term T such that if: - M � ∃ x 1 ∀ y 1 ... f ( � x , � y ) = 0 - θ f computes f then T θ f is a winning strategy for ∃ x 1 ∀ y 1 ... f ( � x , � y ) = 0. Proof: Enumeration of N k , using θ f to check whether we reached a winning position. Theorem : Absoluteness If Φ is an arithmetical formula, then ∃ t ∈ Λ c , t � Φ M � Φ iff ´ Etienne Miquey Realizability games for the specification problem 33/ 39

  81. G 1 : a first game G 2 : general case Introduction Classical realizability Specification Conclusion Consequences Proposition : Uniform winning strategy There exists a term T such that if: - M � ∃ x 1 ∀ y 1 ... f ( � x , � y ) = 0 - θ f computes f then T θ f is a winning strategy for ∃ x 1 ∀ y 1 ... f ( � x , � y ) = 0. Proof: Enumeration of N k , using θ f to check whether we reached a winning position. Theorem : Absoluteness If Φ is an arithmetical formula, then ∃ t ∈ Λ c , t � Φ M � Φ iff ´ Etienne Miquey Realizability games for the specification problem 33/ 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend