rainbow matchings
play

Rainbow matchings Existence and counting Guillem Perarnau - PowerPoint PPT Presentation

Rainbow matchings Existence and counting Guillem Perarnau Universitat Polit` ecnica de Catalunya Departament de Matem` atica Aplicada IV 2nd September 2011 Budapest joint work with Oriol Serra Outline The problem 1 Counting with the


  1. Rainbow matchings Existence and counting Guillem Perarnau Universitat Polit` ecnica de Catalunya Departament de Matem` atica Aplicada IV 2nd September 2011 Budapest joint work with Oriol Serra

  2. Outline The problem 1 Counting with the Local Lemma 2 Our Approach 3 Random Models 4 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 2 / 19

  3. Outline The problem 1 Counting with the Local Lemma 2 Our Approach 3 Random Models 4 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 3 / 19

  4. Rainbow matchings and Latin transversals → N Edge coloring . C : E ( K n , n ) − Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  5. Rainbow matchings and Latin transversals → N Edge coloring . C : E ( K n , n ) − Perfect matching : M = { e i indep } Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  6. Rainbow matchings and Latin transversals → N Edge coloring . C : E ( K n , n ) − Perfect matching : M = { e i indep } Rainbow matching : no repeated colors in M . Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  7. Rainbow matchings and Latin transversals → N Edge coloring . C : E ( K n , n ) − Integer square matrix A = { a ij } Perfect matching : M = { e i indep } Rainbow matching : no repeated colors in M . 0 1 1 5 4 2 7 2 6 3 B C B C 5 4 2 1 @ A 3 5 3 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  8. Rainbow matchings and Latin transversals → N Edge coloring . C : E ( K n , n ) − Integer square matrix A = { a ij } Perfect matching : M = { e i indep } Transversal T σ = { a i σ ( i ) } Rainbow matching : no repeated colors in M . 0 1 1 5 4 2 7 2 6 3 B C B C 5 4 2 1 @ A 3 5 3 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  9. Rainbow matchings and Latin transversals → N Edge coloring . C : E ( K n , n ) − Integer square matrix A = { a ij } Perfect matching : M = { e i indep } Transversal T σ = { a i σ ( i ) } Rainbow matching : Latin Transversal : no repeated colors in M . no repeated entries in T σ . 0 1 1 5 4 2 7 2 6 3 B C B C 5 4 2 1 @ A 3 5 3 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  10. Open problems on Latin squares - Existence Conjecture (Ryser, 1967) Every latin square of odd order admits a latin transversal. Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  11. Open problems on Latin squares - Existence Conjecture (Ryser, 1967) Every latin square of odd order admits a latin transversal. Conjecture (Brualdi, 1975) Every latin square admits a partial latin transversal of size n − 1. Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  12. Open problems on Latin squares - Existence Conjecture (Ryser, 1967) Every latin square of odd order admits a latin transversal. Conjecture (Brualdi, 1975) Every latin square admits a partial latin transversal of size n − 1. Theorem (Hatami and Shor, 2008) Every latin square admits a partial latin transversal of size n − O ( log 2 n ) . Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  13. Open problems on Latin squares - Existence Conjecture (Ryser, 1967) Every latin square of odd order admits a latin transversal. Conjecture (Brualdi, 1975) Every latin square admits a partial latin transversal of size n − 1. Theorem (Hatami and Shor, 2008) Every latin square admits a partial latin transversal of size n − O ( log 2 n ) . Proposition (Erd˝ os and Spencer, 1991) n For every integer matrix, if no entry appears more than 4 e times, then it has a latin transversal. Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  14. Open problems on Latin squares - Counting Conjecture (Vardi, 1991) Let z n be the number of latin transversals of the cyclic group of order n . Then there exists two constants 0 < c 1 < c 2 < 1 such that c n 1 n ! < z n < c n 2 n ! Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 6 / 19

  15. Open problems on Latin squares - Counting Conjecture (Vardi, 1991) Let z n be the number of latin transversals of the cyclic group of order n . Then there exists two constants 0 < c 1 < c 2 < 1 such that c n 1 n ! < z n < c n 2 n ! Theorem (McKay, McLeod and Wanless, 2006 / Cavenagh and Wan- less, 2010) Let z n be the number of latin transversals of the cyclic group of order n . Then a n < z n < b n √ nn ! where a = 3 . 246 and b = 0 . 614. Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 6 / 19

  16. Outline The problem 1 Counting with the Local Lemma 2 Our Approach 3 Random Models 4 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 7 / 19

  17. Poisson Paradigm A 1 , . . . , A m bad events Pr ( A i ) = p i , m ! \ Pr A i ? i = 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  18. Poisson Paradigm A 1 , . . . , A m bad events Pr ( A i ) = p i , m ! \ Pr A i ? i = 1 If A i are mutually independent 1 m ! m m \ Y ( 1 − p i ) ∼ e − µ X expected number Pr A i = µ = p i of bad events i = 1 i = 1 i = 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  19. Poisson Paradigm A 1 , . . . , A m bad events Pr ( A i ) = p i , m ! \ Pr A i ? i = 1 If A i are mutually independent 1 m ! m m \ Y ( 1 − p i ) ∼ e − µ X expected number Pr A i = µ = p i of bad events i = 1 i = 1 i = 1 If µ < 1, by the union bound 2 m ! m \ X Pr A i ≥ 1 − Pr ( A i ) = 1 − µ > 0 i = 1 i = 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  20. Poisson Paradigm A 1 , . . . , A m bad events Pr ( A i ) = p i , m ! \ Pr A i ? i = 1 If A i are mutually independent 1 m ! m m \ Y ( 1 − p i ) ∼ e − µ X expected number Pr A i = µ = p i of bad events i = 1 i = 1 i = 1 If µ < 1, by the union bound 2 m ! m \ X Pr A i ≥ 1 − Pr ( A i ) = 1 − µ > 0 i = 1 i = 1 Poisson paradigm : If the dependencies among A i are rare. m ! \ = ( 1 + o ( 1 )) e − µ Pr A i i = 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  21. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  22. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } E ( H ) = { dependencies among events } Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  23. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } E ( H ) = { dependencies among events } , Pr ( A i | T j ∈ S A j ) = Pr ( A i ) Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  24. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } E ( H ) = { dependencies among events } , Pr ( A i | T j ∈ S A j ) = Pr ( A i ) ∃ x 1 , . . . , x m ∈ ( 0 , 1 ) such that Y Pr ( A i ) ≤ x i ( 1 − x j ) A j ∈ N ( A i ) Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  25. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } E ( H ) = { dependencies among events } , Pr ( A i | T j ∈ S A j ) = Pr ( A i ) ∃ x 1 , . . . , x m ∈ ( 0 , 1 ) such that Y Pr ( A i ) ≤ x i ( 1 − x j ) A j ∈ N ( A i ) Then, m ! \ > 0 Pr A i EXISTENCE i = 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  26. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } E ( H ) = { dependencies among events } , Pr ( A i | T j ∈ S A j ) = Pr ( A i ) ∃ x 1 , . . . , x m ∈ ( 0 , 1 ) such that Y Pr ( A i ) ≤ x i ( 1 − x j ) A j ∈ N ( A i ) Then, m ! m \ Y > ( 1 − x i ) Pr A i COUNTING (lower bound) i = 1 i = 1 Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  27. Lov´ asz Local Lemma dependency graph H , V ( H ) = { A 1 , . . . , A m } E ( H ) = { dependencies among events } , Pr ( A i | T j ∈ S A j ) = Pr ( A i ) ∃ x 1 , . . . , x m ∈ ( 0 , 1 ) such that Y Pr ( A i ) ≤ x i ( 1 − x j ) A j ∈ N ( A i ) Then, m ! m \ Y > ( 1 − x i ) Pr A i COUNTING (lower bound) i = 1 i = 1 Lopsided version (Erd˝ os and Spencer, 1991) Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  28. Upper bound using local Lemma (Lu and Szekely, 2009) ε -near dependency graph H , V ( H ) = { A 1 , . . . , A m } Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

  29. Upper bound using local Lemma (Lu and Szekely, 2009) ε -near dependency graph H , V ( H ) = { A 1 , . . . , A m } Pr ( A i ∩ A j ) = 0 if ( i , j ) ∈ E ( H ) Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

  30. Upper bound using local Lemma (Lu and Szekely, 2009) ε -near dependency graph H , V ( H ) = { A 1 , . . . , A m } Pr ( A i ∩ A j ) = 0 if ( i , j ) ∈ E ( H ) for any S ⊆ [ m ] \ N ( A i ) \ Pr ( A i | A j ) ≥ ( 1 − ε ) Pr ( A i ) j ∈ S Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend