r process nucleosynthesis in neutron star mergers with
play

r-Process nucleosynthesis in neutron star mergers with SkyNet Jonas - PowerPoint PPT Presentation

r-Process nucleosynthesis in neutron star mergers with SkyNet Jonas Lippuner Luke Roberts, Rodrigo Fern andez, Francois Foucart, Matt Duez, Christian Ott NPCSM 2016, YTIP, Kyoto University, Kyoto, Japan November 9, 2016 Outline 1.


  1. r-Process nucleosynthesis in neutron star mergers with SkyNet Jonas Lippuner Luke Roberts, Rodrigo Fern´ andez, Francois Foucart, Matt Duez, Christian Ott NPCSM 2016, YTIP, Kyoto University, Kyoto, Japan November 9, 2016

  2. Outline 1. r-Process recap 2. SkyNet 3. Parametrized r-process study 4. r-Process in accretion disk outflow 5. r-Process in NSBH dynamical ejecta (time permitting) 2 Jonas Lippuner

  3. r-Process recap τ n ≪ τ β − ∼ 10 ms – 10 s 90 Zr 91 Zr 92 Zr 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 3 Jonas Lippuner

  4. r-Process recap τ n ≪ τ β − ∼ 10 ms – 10 s 90 Zr 91 Zr 92 Zr 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 3 Jonas Lippuner

  5. r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner

  6. r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner

  7. r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner

  8. r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner

  9. r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner

  10. r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner

  11. Solar system abundances 10 even A odd A 8 iron-peak log relative abundance (Si = 10 6 ) 6 N = 50 4 r s N = 82 N = 126 r s r s 2 0 Data credit: Katharina Lodders , ApJ 591, 1220 (2003) − 2 0 25 50 75 100 125 150 175 200 225 Mass number A 5 Jonas Lippuner

  12. SkyNet ▸ General-purpose nuclear reaction network ▸ ∼ 8000 isotopes, ∼ 140,000 nuclear reactions ▸ Evolves temperature and entropy based on nuclear reactions ▸ Input: ρ ( t ) , initial composition, initial entropy or temperature ▸ Open source (soon) JL, Roberts 2016, in prep. 6 Jonas Lippuner

  13. SkyNet Define abundance Y i = n i (1) . n B Consider reaction p + 7 Li → 2 4 He (2) with rate λ = λ ( T ,ρ ) . Then Y 4 He = 2 λ Y p Y 7 Li + ⋯ , ˙ Y p = − λ Y p Y 7 Li + ⋯ , ˙ Y 7 Li = − λ Y p Y 7 Li + ⋯ ˙ (3) 7 Jonas Lippuner

  14. SkyNet reaction types Strong ▸ Ordinary: n + 196 Au → 197 Au (REACLIB, Cyburt+10) ▸ Neutron induced fission: n + 235 U → 118 Pd + 118 Pd (Panov+10, Mamdouh+01, Wahl02) ▸ Spontaneous fission: 301 Md → 121 Ag + 180 Xe (Frankel+47) Weak ▸ Beta decays: 86 Br → 86 Kr + e − + ¯ ν e (REACLIB, Fuller+82) ▸ Electron capture: 26 Al + e − → 26 Mg + ν e (REACLIB, Fuller+82) ▸ Neutrino interactions and e − /e + capture on free nucleons: n + ν e → p + e − (Arcones+02) ▸ λ ν e ∝ ∫ w ec dE E 2 ( E − Q ) 2 ( 1 − f e ) f ν e ∞ 8 Jonas Lippuner

  15. SkyNet additional features Science ▸ Expanded Helmholtz equation of state ▸ Calculate nuclear statistical equilibrium (NSE) ▸ Calculate inverse rates from detailed balance to be consistent with NSE ▸ NSE evolution mode ▸ Implementing screening with chemical potential corrections Code ▸ Adaptive time stepping ▸ Python bindings ▸ Extendible reaction class ▸ Make movie with chart of nuclides 9 Jonas Lippuner

  16. Parametrized r-process study 10 Jonas Lippuner

  17. Parametrized r-process Lippuner & Roberts, 2015, ApJ, 815, 82, arXiv:1508.03133 Parameters 0 . 01 ≤ Y e ≤ 0 . 50 initial electron fraction 1 k B baryon − 1 ≤ s ≤ 100 k B baryon − 1 initial specific entropy 0 . 1ms ≤ τ ≤ 500ms expansion time scale Density profile 1 ⎧ Density ρ / ρ 0 ⎪ t ≤ 3 τ ⎪ 10 − 3 ⎪ ρ 0 e − t / τ ρ ( t ,τ ) = ⎨ t = 3 τ ⎪ 3 ⎪ ρ 0 ( 3 τ te ) t ≥ 3 τ ⎪ 10 − 6 ⎩ 10 − 9 10 − 3 10 − 2 10 − 1 10 1 10 2 10 3 1 Time t / τ Initial conditions ▸ Choose initial temperature T 0 = 6GK ▸ Find ρ 0 by solving for NSE at T 0 and Y e that produces specified s 11 Jonas Lippuner

  18. Movies http://lippuner.ca/skynet/SkyNet_Ye_0.010_s_010.000_tau_007.100.mp4 http://lippuner.ca/skynet/SkyNet_Ye_0.250_s_010.000_tau_007.100.mp4 12 Jonas Lippuner

  19. Final abundances vs. electron fraction 10 − 1 s = 10 k B baryon − 1 Y e = 0 . 01 Y e = 0 . 25 Lanthanides τ = 7 . 1ms Y e = 0 . 19 Y e = 0 . 50 10 − 2 Actinides Solar r-process 10 − 3 Relative final abundance 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 10 − 9 10 − 10 0 50 100 150 200 250 Mass number A 13 Jonas Lippuner

  20. Final abundances vs. entropy 10 − 1 Y e = 0 . 19 s k B = 1 s k B = 10 Lanthanides τ = 7 . 1ms s k B = 3 . 2 s k B = 100 10 − 2 Actinides Solar r-process 10 − 3 Relative final abundance 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 10 − 9 10 − 10 0 50 100 150 200 250 Mass number A 14 Jonas Lippuner

  21. Impact of electron fraction 0 10 X La 9 X Ac X La+Ac − 1 8 Number of fission cycles Number of fission cycles 7 − 2 s = 10 k B baryon − 1 6 τ = 1ms log X 5 − 3 4 3 − 4 2 1 − 5 0 0.0 0.1 0.2 0.3 0.4 0.5 Electron fraction Y e 15 Jonas Lippuner

  22. Example light curves 10 42 Y e = 0 . 01 s = 10 k B baryon − 1 Y e = 0 . 13 τ = 7 . 1ms Y e = 0 . 25 M = 0 . 01 M ⊙ Luminosity, heating rate [erg s − 1 ] Luminosity Heating rate 10 41 10 40 10 39 0 5 10 15 Time [day] 16 Jonas Lippuner

  23. r-Process in accretion disk outflow 17 Jonas Lippuner

  24. Ejecta mass 10 − 3 M ⊙ 10 − 3 M ⊙ M ej [ 10 − 3 M ⊙ 10 − 3 M ⊙ ] M ej , Y e ≤ 0 . 25 [ 10 − 3 M ⊙ 10 − 3 M ⊙ ] τ [ms] τ M ej M ej , Y e ≤ 0 . 25 τ M ej M ej , Y e ≤ 0 . 25 0 1.8 1.36 10 1.9 1.07 30 3.3 0.83 100 7.8 0.52 300 18.0 0.67 ∞ 29.6 0.69 JL, Fern´ andez, Roberts, et al. 2016, in prep. 18 Jonas Lippuner

  25. e distribution vs. HMNS lifetime Y Y e Y e 2.5 τ = 0 ms τ = 10 ms τ = 30 ms 2.0 τ = 100 ms τ = 300 ms Ejecta mass [10 − 3 M ⊙ ] τ = ∞ 1.5 1.0 0.5 0.0 0.1 0.2 0.3 0.4 0.5 Electron fraction Y e 19 Jonas Lippuner

  26. Final abundances vs. HMNS lifetime τ = 0 ms τ = 30 ms 10 − 1 τ = 10 ms τ = 100 ms τ = 300 ms τ = ∞ ms Final mass × abundance ( M ej Y i ) 10 − 2 Solar r-process 10 − 3 10 − 4 10 − 5 10 − 6 0 50 100 150 200 250 Mass number A 20 Jonas Lippuner

  27. τ = 300 ms ejecta properties τ = 300 τ = 300 1 . 5 2 M ej , − 3 ⊙ M ej , − 3 ⊙ 1 . 0 1 0 . 5 0 0 . 0 − 1 0.03 0.1 0.3 1 3 log v final [ c ] t 5GK [s] 2 . 0 − 2 M ej , − 3 ⊙ 1 . 5 1 . 0 0 . 5 − 3 100 s 5GK [ k B baryon − 1 ] 80 60 40 20 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 − 3 − 2 − 1 0 2 4 6 Y e, 5GK log v final [ c ] M ej , − 3 ⊙ 21 Jonas Lippuner

  28. r-Process in NSBH dynamical ejecta 22 Jonas Lippuner

  29. Neutron star–black hole merger 1. Full GR simulation of NS–BH Francois Foucart (LBL), Foucart+14 2. Ejecta in SPH code, Matt Duez (WSU) 3. Nucleosynthesis with SkyNet and varying neutrino luminosity JL and Luke Roberts (Caltech) Roberts, JL, Duez, et al. 2016, MNRAS in press , arXiv:1601.07942 Figure credit: F. Foucart 23 Jonas Lippuner

  30. BHNS: Final abundances vs. neutrino luminosity 10 − 2 L ν e , 52 = 0 . 2 L ν e , 52 = 25 L ν e , 52 = 1 Solar r-process 10 − 3 Relative final abundance 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 0 50 100 150 200 250 Mass number A 24 Jonas Lippuner

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend