quasi distances and weighted finite automata
play

Quasi-Distances and Weighted Finite Automata Timothy Ng, David - PowerPoint PPT Presentation

. .. . .. . . .. . . .. . . .. . . . .. . .. . . .. . . .. . Quasi-Distances and Weighted Finite Automata Timothy Ng, David Rappaport, and Kai Salomaa School of Computing, Queens University DCFS 2015, Waterloo, ON .


  1. . .. . .. . . .. . . .. . . .. . . . .. . .. . . .. . . .. . Quasi-Distances and Weighted Finite Automata Timothy Ng, David Rappaport, and Kai Salomaa School of Computing, Queen’s University DCFS 2015, Waterloo, ON . . .. .. . . .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . . .. June 27, 2015

  2. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . Are neighbourhoods of a regular language also regular? What is the state complexity of the neighbourhood of a . .. .. . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . regular language?

  3. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . We use weighted finite automata to help us show the state complexity of the neighbourhood of a regular language . .. .. . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . (Salomaa, Schofield 2007).

  4. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . 1. Can additive additive WFAs recognize neighbourhoods with respect to additive quasi-distances? 2. Is there a lower bound example for the state complexity of additive WFA languages over an alphabet with a .. . .. . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . constant number of symbols?

  5. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . 1. Can additive additive WFAs recognize neighbourhoods with respect to additive quasi-distances? 2. Is there a lower bound example for the state complexity of additive WFA languages over an alphabet with a .. . .. . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . constant number of symbols?

  6. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . If condition (1) is relaxed to d x y if x y , then d is a .. .. . . . . .. . . .. . . .. . . .. .. . .. .. . . .. . . . . . .. . . .. . quasi-distance. A distance is a function d : Σ ∗ × Σ ∗ → [0 , ∞ ) such that 1. d ( x , y ) = 0 if and only if x = y 2. d ( x , y ) = d ( y , x ) 3. d ( x , y ) ≤ d ( x , w ) + d ( w , y )

  7. . . .. .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . . . . . . .. . . .. . . .. . . . .. . . .. . . .. . .. .. . . .. . . quasi-distance. A distance is a function d : Σ ∗ × Σ ∗ → [0 , ∞ ) such that 1. d ( x , y ) = 0 if and only if x = y 2. d ( x , y ) = d ( y , x ) 3. d ( x , y ) ≤ d ( x , w ) + d ( w , y ) If condition (1) is relaxed to d ( x , y ) = 0 if x = y , then d is a

  8. . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. Islington → Eglin_ton

  9. . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. Montréal → Montreal

  10. . .. .. . . .. . . .. . . .. . . . .. . .. . . .. . . .. . . .. . with respect to a distance measure d is the set of all words u . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . The neighbourhood of a language L ⊆ Σ ∗ of radius r ≥ 0 with d ( w , u ) ≤ r for some w ∈ L , E ( L , d , r ) = { u ∈ Σ ∗ | ( ∃ w ∈ L ) d ( w , u ) ≤ r } .

  11. . .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . For which distances are neighbourhoods of regular . .. .. . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . languages regular for all radii r ≥ 0 ?

  12. . .. .. .. . . .. . . .. . . .. . . . .. . .. . . .. . . .. . Theorem (Calude, Salomaa, Yu 2002) Let d be an additive quasi-distance on and L be a regular language. Then E L d r is regular for all r . . . .. . . .. . . .. . . .. . . .. . . . . . .. . . .. . . . .. . . .. . . .. A distance d on Σ ∗ is additive if for all factorizations w = w 1 w 2 , we have for all r ≥ 0 ∪ E ( { w } , d , r ) = E ( { w 1 } , d , r 1 ) · E ( { w 2 } , d , r 2 ) r 1 + r 2 = r

  13. . .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . Theorem (Calude, Salomaa, Yu 2002) . .. .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . A distance d on Σ ∗ is additive if for all factorizations w = w 1 w 2 , we have for all r ≥ 0 ∪ E ( { w } , d , r ) = E ( { w 1 } , d , r 1 ) · E ( { w 2 } , d , r 2 ) r 1 + r 2 = r Let d be an additive quasi-distance on Σ ∗ and L ⊆ Σ ∗ be a regular language. Then E ( L , d , r ) is regular for all r ≥ 0 .

  14. . .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . An additive weighted finite automaton is a 6-tuple . .. .. . . . .. . . .. . . .. . . . . .. .. . . .. . . .. . . .. . . .. . A = ( Q , Σ , γ, ω, q 0 , F ) , where ▶ Q is the set of states ▶ Σ is the alphabet ▶ γ is the transition function ▶ ω is the weight function ▶ q 0 is the initial state ▶ F is the set of final states

  15. . . .. . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . Theorem (Salomaa, Schofield 2007) construct an additive WFA which recognizes the . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . Let A be an NFA, d an additive distance, and r 0 ≥ 0 . We can neighbourhood E ( L ( A ) , d , r ) for any 0 ≤ r ≤ r 0 .

  16. . . . .. . . .. . .. .. . . .. . . .. . . . . We can do this because neighbourhoods of additive distances c . a . s q . . p . . This involves adding transitions with the appropriate weight. . .. . .. .. .. .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . .. . . . .. . . .. . are finite.

  17. . .. .. . . .. . . . . . .. . . .. . . . .. .. a We can do this because neighbourhoods of additive distances . . . c . . . s . q . p . This involves adding transitions with the appropriate weight. .. . . .. .. . . .. . . . .. . .. . . .. . . . . .. . . . .. . . .. . . .. . . .. . . .. . are finite. b | 1 b | 1 b | 2

  18. . .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . How do we construct an additive WFA for neighbourhoods . .. .. . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . with respect to quasi-distances?

  19. . . . .. . . .. . .. .. . . .. . . .. . . . .. p . a . s . q . . . . . . . . start . .. . . .. . .. . . .. . . . . . .. . . .. . . . c .. . . .. . . .. . . . .. . .. .. . . .. . . σ | d ( σ, ϵ ) σ | d ( σ, ϵ ) σ | d ( σ, a ) 0 1

  20. . . . .. . . .. . .. .. . . .. . . .. . . . .. p . a . s . q . . . . . . . . start . .. . . .. . .. . . .. . . . . . .. . . .. . . . c .. . . .. . . .. . . . .. . .. .. . . .. . . σ | d ( σ, ϵ ) σ | d ( σ, ϵ ) σ | d ( σ, a ) 0 1

  21. . . . . .. . . .. . . .. . . .. . . .. .. . . . Compute all-pairs shortest paths and consider the paths with . a . . . . .. . . . . . . . . .. .. .. .. . . .. . . . . . .. . . .. . . . . .. . . .. . . .. . . .. . weight at most r . . .. . . . .. a | 1 c | 1 p , 0 q , 0 s , 0 c | 1 a | 1 c | 1 p , 1 q , 1 s , 1

  22. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . Theorem Suppose that L has an NFA with n states and d is a quasi-distance. The neighbourhood of L of radius r can be recognized by an additive WFA having n states within weight .. . .. . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . bound r .

  23. n states. . . .. . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . We can construct an equivalent DFA that recognizes a WFA Theorem (Salomaa, Schofield 2007) Let A be an additive WFA with integer weights and r . The language L A r can be recognized by a DFA having r . . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. .. with weight up to r . This requires at most ( r + 2) n states.

  24. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . We can construct an equivalent DFA that recognizes a WFA Theorem (Salomaa, Schofield 2007) .. . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . .. . with weight up to r . This requires at most ( r + 2) n states. Let A be an additive WFA with integer weights and r ∈ N . The language L ( A , r ) can be recognized by a DFA having ( r + 2) n states.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend