quantum algorithms based on quantum walks
play

Quantum algorithms based on quantum walks . J er emie Roland - PowerPoint PPT Presentation

. Quantum algorithms based on quantum walks . J er emie Roland Universit e Libre de Bruxelles Quantum Information & Communication J er emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 1 / 39 Outline


  1. . Quantum algorithms based on quantum walks . J´ er´ emie Roland Universit´ e Libre de Bruxelles Quantum Information & Communication J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 1 / 39

  2. Outline Preliminaries ▶ Classical random walks ▶ Three search algorithms based on random walks Search algorithms based on quantum walks ▶ From random to quantum walks [Szegedy’04] ▶ Grover’s algorithm: Complete graph [Grover’95] ▶ Element Distinctness: Johnson graph [Ambainis’04] ▶ Generalized search algorithm via quantum walk [Magniez,Nayak,Roland,Santha’07] ▶ Quantum hitting time: Detecting vs finding [Szegedy’04],[Krovi,Magniez,Ozols,Roland’10] Other algorithms based on quantum walks ▶ Exponential speed-up: ”Glued trees” [Childs,Cleve,Deotto,Farhi,Gutmann,Spielman’03] ▶ Scattering-based algorithms: Formula evaluation [Farhi,Goldstone,Gutmann’07] ▶ Universal quantum computation by quantum walks [Childs’09,Childs,Gossett,Webb’12] Conclusion J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 2 / 39

  3. Random walk on a graph . Stochastic matrix P = ( p xy ) . p xy ̸ = 0 only if ( x , y ) is an edge Eigenvalues 1 = λ 0 > λ 1 ≥ . . . ≥ λ n − 1 > − 1 (Assume P ergodic, symmetric) Stationary distribution: π P = π ( π uniform if P symmetric) Eigenvalue gap δ = 1 − λ 1 . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 5 / 39

  4. Mixing time . Definition: Mixing time . Mixing time MT ( P ) : Number of steps necessary to approach π MT ( P ) ≤ 1 δ , where δ = 1 − λ 1 is the eigenvalue gap . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 6 / 39

  5. Hitting time . Definition: Hitting time . Let M be a set of marked vertices Assume we start from a random vertex x ∼ π Hitting time HT ( P , M ) : Expected number of steps to reach m ∈ M εδ , where ε = | M | 1 HT ( P , M ) ≤ | X | . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 7 / 39

  6. Abstract search problem (classical) . The problem . Available procedures . Input: . Setup (cost S): a set of elements X pick a random x ∈ X with unknown subset of Check (cost C): marked elements M ⊆ X check whether x ∈ M ( ) ε = | M | | X | Update (cost U): Output: make a random walk P . a marked element x ∈ M . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 9 / 39

  7. Three (classical) search algorithms . Naive algorithm . . Random walk I Repeat ( 1 ε ) × . Pick random x ∈ X (S) Pick random x ∈ X (S) Repeat ( 1 ε ) × Check whether x ∈ M (C) ▶ Check whether x ∈ M (C) Cost: 1 ε ( S + C ) ▶ Repeat ( 1 . δ ) × ⋆ Random walk (U) . Idea: Use random walk! Cost: S + 1 ε ( 1 δ U + C ) . . MT × random walk ≈ pick random x . (mixing time MT ≤ 1 . δ ) ) Random walk II . Pick random x ∈ X (S) Repeat HT × (hitting time HT ≤ 1 εδ ) ) ▶ Check whether x ∈ M (C) ▶ Random walk (U) Cost: S + HT ( U + C ) . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 10 / 39

  8. Observations Naive algorithm ▶ Samples a new independent vertex at each step ⇒ Equivalent to walk on complete graph with U = S ▶ p xy = 1 n for all x , y ▶ Eigenvalues: λ 0 = 1 and λ i = 0 for all i ̸ = 0 Random walk I ▶ Repetitions of an ergodic walk approximates the walk on the complete graph ▶ Mathematically: For large T , λ T i → 0 whenever | λ i | < 1 J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 11 / 39

  9. Abstract search problem (quantum) . . Two related problems Available procedures . . Input: Setup (cost S): 1 √ ∑ prepare | π ⟩ = x | x ⟩ a set of elements X | X | with unknown subset of Check (cost C): marked elements M ⊆ X reflection / marked elements Output: { | x ⟩ if x ∈ M ref M : | x ⟩ �→ . . −| x ⟩ otherwise Find a marked element x ∈ M 1 Update (cost U): . . Detect whether there is a 2 apply quantum walk W marked element ( M = ∅ ?) . . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 13 / 39

  10. Grover’s algorithm [Grover’95] 1 √ We start with | π ⟩ = ∑ x ∈ X | x ⟩ | X | | M ⟩ √ 1 Goal: prepare | M ⟩ = ∑ x ∈ M | x ⟩ | M | We use 2 reflections: 2 ϕ ▶ through | M ⊥ ⟩ : ref M ⊥ = − ref M (C) | π ⟩ ▶ through | π ⟩ : ref π ϕ (S) ϕ | M ⊥ ⟩ . Grover’s algorithm . sin ϕ = ⟨ M | π ⟩ Prepare | π ⟩ (S) √ | M | Repeat T × = | X | √ ε ▶ apply ref M ⊥ (C) = ▶ apply ref π (S) 1 Cost: T √ ε ( S + C ) . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 15 / 39

  11. Grover’s algorithm: Observations Quantum analogue of the naive algorithm “pick and check”. 1 1 √ ε ( S + C ) vs ε ( S + C ) = ⇒ Grover’s quadratic speed-up What if S is high? = ⇒ Replace ref π by some quantum walk W ! J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 16 / 39

  12. From random to quantum walks [Szegedy’04] . Random walk P on edges ( x , y ) . Acts on two registers: position x and coin y ▶ Flip the coin y over the neighbours of x Walk in two steps: ▶ Swap x and y . . Quantum analogue W ( P ) . Acts on two registers | x ⟩| y ⟩ y ′ √ p y ′ x | y ′ ⟩ ▶ reflection of | y ⟩ through | p x ⟩ = ∑ Walk in two steps: ▶ Swap the | x ⟩ and | y ⟩ registers . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 18 / 39

  13. Spectral correspondance [Szegedy’04] . . Random walk Quantum walk . . P = ( p xy ) W ( P ) = S WAP · ref X E-v: e ± i θ k E-v: λ k = cos θ k Stationary dist. (cos θ 0 = 1) : Stationary state ( θ 0 = 0) : √ π x | x ⟩| p x ⟩ π = ( π x ) | π ⟩ = ∑ x √ E-v gap: δ = 1 − | cos θ 1 | phase gap: ∆ = | θ 1 | = Θ( δ ) . . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 19 / 39

  14. Back to Grover’s algorithm . . Grover’s algorithm Use quantum walk? . . Prepare | π ⟩ (S) Replace ref π by Repeat O ( 1 √ ε ) × − → T × quantum walk??? Reflection / marked ref M (C) ( ) T = O ( 1 1 ∆ ) = O ( δ ) √ . Reflection / uniform ref π (S) . 1 Cost: √ ε ( S + C ) Tentative quantum walk . . Prepare | π ⟩ (S) . Repeat O ( 1 √ ε ) × What if S is high??? . Reflection / marked ref M (C) Repeat O ( 1 δ ) × √ ▶ Quantum walk (U) √ ε ( 1 1 Cost: S + δ U + C ) √ . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 21 / 39

  15. b b b b b b b b b b b b b Use repetitions of quantum walk instead of reflection? . . Random walk P : eigenvalues . Quantum walk W : eigenvalues . µ k = e 2 i θ k λ k = cos θ k | λ k | ≤ 1 − δ | 1 − µ k | ≤ ∆ θ 3 µ 3 θ 2 µ 2 P W θ 1 µ 1 ∆ − 1 λ 3 λ 2 λ 1 1 − 1 1 δ × ( λ k ) T ≈ 0 T = O ( 1 δ ) Problem: ( µ k ) T − T →∞ − 1 − − − → P T ref π − 1 0 1 − 1 1 P T ≈ walk on complete graph W T does not simulate ref π ! J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 22 / 39

  16. b b b b b b b b b b b b b b Ambainis’ quantum walk [Ambainis’04] C π ∆ W T W C C ∆ × C ∆ ∆ − → π 0 π 0 If W has eigenvalues e i θ k , W T has eigenvalues e iT θ k Suppose that ∃ C ≤ π such that ∀ k ̸ = 0: ∆ ≤ θ k ≤ π ∆ − π ∆ C ≤ θ k ≤ − ∆ or C ∆ , then W T has eigenvalue gap ∆ ′ = C If T = C J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 23 / 39

  17. Quantum walk for Element Distinctness [Ambainis’04] . Idea . Replace ref π by W T in Grover’s algorithm, with T = O ( 1 δ ) √ . Works under some assumptions: W T must have constant gap Ω( C ) ⇒ OK for Johnson graphs (Element Distinctness) Unique solution Properties: Finds a marked element Cost S + 1 √ ε ( 1 √ U + C ) δ . What about other graphs? . J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 24 / 39

  18. b b b b b b b b b Indirect simulation of the reflection . Idea . Using W , simulate ref π to use Grover’s algorithm . W ref π ∆ − 1 1 − 1 1 W | π ⟩ = | π ⟩ ref π | π ⟩ = | π ⟩ W | ψ k ⟩ = e i θ k | ψ k ⟩ ref π | ψ k ⟩ = −| ψ k ⟩ We need a procedure to discriminate between eigenstates | ψ k ⟩ with | θ k | ≥ ∆ | π ⟩ with θ 0 = 0. We use quantum phase estimation! [Kitaev’95, Cleve et al ’98] J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 25 / 39

  19. Using phase estimation [Magniez,Santha,Roland,Nayak’07] √ Discriminating between phases 0 and ≥ ∆ has a cost O ( 1 / ∆) = O ( 1 / δ ) ⇒ We obtain = Search algorithm via quantum walk from any ergodic Markov chain Total cost: S + 1 √ ε ( 1 √ U + C ) δ finds marked elements No assumption on the number of marked elements J´ er´ emie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 26 / 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend