provability of weak circuit lower bounds
play

Provability of weak circuit lower bounds J an Pich Kurt G odel - PowerPoint PPT Presentation

Proof complexity, Dagstuhl 1st February 2018 Provability of weak circuit lower bounds J an Pich Kurt G odel Research Center University of Vienna based on a joint work with Moritz M uller 1 / 11 Constructive proofs of circuit lower


  1. Proof complexity, Dagstuhl 1st February 2018 Provability of weak circuit lower bounds J´ an Pich Kurt G¨ odel Research Center University of Vienna based on a joint work with Moritz M¨ uller 1 / 11

  2. Constructive proofs of circuit lower bounds Known circuit lower bounds for f given explicitly: AC 0 , AC 0 [ p ], etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs 2 / 11

  3. Constructive proofs of circuit lower bounds Known circuit lower bounds for f given explicitly: AC 0 , AC 0 [ p ], etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs Razborov-Rudich: Cryptography works → no natural proof of P � =NP. 2 / 11

  4. Constructive proofs of circuit lower bounds Known circuit lower bounds for f given explicitly: AC 0 , AC 0 [ p ], etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs Razborov-Rudich: Cryptography works → no natural proof of P � =NP. Mathematical logic: ◦ upper bounds: Prove all known circuit lower bounds in a constructive mathematical theory, e.g. PV 1 (p-time reasoning). - exhibit a structure of algorithms recognizing hard functions? 2 / 11

  5. Constructive proofs of circuit lower bounds Known circuit lower bounds for f given explicitly: AC 0 , AC 0 [ p ], etc. very constructive: p-time algorithm often recognizing when f is hard a.k.a natural proofs Razborov-Rudich: Cryptography works → no natural proof of P � =NP. Mathematical logic: ◦ upper bounds: Prove all known circuit lower bounds in a constructive mathematical theory, e.g. PV 1 (p-time reasoning). - exhibit a structure of algorithms recognizing hard functions? ◦ lower bounds: PV 1 �⊢ strong circuit lower bounds? - stronger ’natural proofs’ barrier: P=NP consistent with PV 1 ? - circuit lower bounds as hard tautologies witnessing NP � =coNP? 2 / 11

  6. Bounded arithmetic and propositional logic PV 1 : first-order theory formalizing p-time reasoning (Cook ’75) APC 1 : formalizes probabilistic p-time reasoning (Jeˇ r´ abek ’07) ∈ SIZE(2 ǫ n )” APC 1 := PV 1 + “ ∃ f / 3 / 11

  7. Bounded arithmetic and propositional logic PV 1 : first-order theory formalizing p-time reasoning (Cook ’75) APC 1 : formalizes probabilistic p-time reasoning (Jeˇ r´ abek ’07) ∈ SIZE(2 ǫ n )” APC 1 := PV 1 + “ ∃ f / If PV 1 ⊢ ∀ xA ( x ) for a p-time predicate A , then tautologies expressing ∀ xA ( x ) have p-size Extended Frege EF proofs If APC 1 ⊢ ∀ xA ( x ) for a p-time predicate A , then tautologies expressing ∀ xA ( x ) have p-size WF proofs ∈ SIZE (2 ǫ n )” (Jeˇ WF : EF + “ ∃ f / r´ abek ’04) 3 / 11

  8. How to express circuit lower bounds formally First-order formulation : ’every circuit of size n k fails to compute function f ’ LB ( f , n k ): 4 / 11

  9. How to express circuit lower bounds formally First-order formulation : ’every circuit of size n k fails to compute function f ’ LB ( f , n k ): ∀ n > n 0 ∀ circuit C of size ≤ n k ∃ input y , | y | = n ; C ( y ) � = f ( y ) where n 0 , k are fixed constants ◦ If f ∈ NP , then LB ( f , n k ) is Π p 3 (i.e. ∀∃∀ statement) 4 / 11

  10. How to express circuit lower bounds formally First-order formulation : ’every circuit of size n k fails to compute function f ’ LB ( f , n k ): ∀ n > n 0 ∀ circuit C of size ≤ n k ∃ input y , | y | = n ; C ( y ) � = f ( y ) where n 0 , k are fixed constants ◦ If f ∈ NP , then LB ( f , n k ) is Π p 3 (i.e. ∀∃∀ statement) different scaling : LB tt ( f , n k ): ∀ m , n > n 0 , | m | = 2 n ∀ circuit C of size ≤ n k ∃ y , | y | = n ; C ( y ) � = f ( y ) ◦ If f = SAT, then LB tt ( f , n k ) is coNP 4 / 11

  11. How to express circuit lower bounds formally First-order formulation : ’every circuit of size n k fails to compute function f ’ LB ( f , n k ): ∀ n > n 0 ∀ circuit C of size ≤ n k ∃ input y , | y | = n ; C ( y ) � = f ( y ) where n 0 , k are fixed constants ◦ If f ∈ NP , then LB ( f , n k ) is Π p 3 (i.e. ∀∃∀ statement) different scaling : LB tt ( f , n k ): ∀ m , n > n 0 , | m | = 2 n ∀ circuit C of size ≤ n k ∃ y , | y | = n ; C ( y ) � = f ( y ) ◦ If f = SAT, then LB tt ( f , n k ) is coNP Easier to reason about LB tt ( f , n k ) than about LB ( f , n k ). 4 / 11

  12. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) 5 / 11

  13. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) ∈ SIZE ( n O (1) ) ⇒ ∃ A ⊆ { 0 , 1 } n of size poly ( n ) s.t. Lipton-Young: f / � y ∈ A f ( y ) � = C ( y ) 5 / 11

  14. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) ∈ SIZE ( n O (1) ) ⇒ ∃ A ⊆ { 0 , 1 } n of size poly ( n ) s.t. Lipton-Young: f / � y ∈ A f ( y ) � = C ( y ) lb A ( f , n k ): � y ∈ A f ( y ) � = C ( y ) - same meaning as tt ( f , n k ) but poly ( n ) size 5 / 11

  15. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) ∈ SIZE ( n O (1) ) ⇒ ∃ A ⊆ { 0 , 1 } n of size poly ( n ) s.t. Lipton-Young: f / � y ∈ A f ( y ) � = C ( y ) lb A ( f , n k ): � y ∈ A f ( y ) � = C ( y ) - same meaning as tt ( f , n k ) but poly ( n ) size lb w ( f , n k ): poly ( n ) size formula expressing LB ( f , n k ) with existential quantifiers witnessed feasibly by w 5 / 11

  16. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) ∈ SIZE ( n O (1) ) ⇒ ∃ A ⊆ { 0 , 1 } n of size poly ( n ) s.t. Lipton-Young: f / � y ∈ A f ( y ) � = C ( y ) lb A ( f , n k ): � y ∈ A f ( y ) � = C ( y ) - same meaning as tt ( f , n k ) but poly ( n ) size lb w ( f , n k ): poly ( n ) size formula expressing LB ( f , n k ) with existential quantifiers witnessed feasibly by w Possible witnessing w of LB ( f , n k ): a p-time algorithm with input : circuit C of size n k output : y s.t. C ( y ) � = f ( y ) 5 / 11

  17. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) ∈ SIZE ( n O (1) ) ⇒ ∃ A ⊆ { 0 , 1 } n of size poly ( n ) s.t. Lipton-Young: f / � y ∈ A f ( y ) � = C ( y ) lb A ( f , n k ): � y ∈ A f ( y ) � = C ( y ) - same meaning as tt ( f , n k ) but poly ( n ) size lb w ( f , n k ): poly ( n ) size formula expressing LB ( f , n k ) with existential quantifiers witnessed feasibly by w - ∃ w follows e.g. from PV 1 ⊢ LB ( f , n k ) 5 / 11

  18. Propositional formulation : � (expresses LB tt ( f , n k )) tt ( f , n k ): f ( y ) � = C ( y ) y ∈{ 0 , 1 } n 2 n bits f ( y ), poly ( n ) variables for circuit C of size n k , total size: 2 O ( n ) ∈ SIZE ( n O (1) ) ⇒ ∃ A ⊆ { 0 , 1 } n of size poly ( n ) s.t. Lipton-Young: f / � y ∈ A f ( y ) � = C ( y ) lb A ( f , n k ): � y ∈ A f ( y ) � = C ( y ) - same meaning as tt ( f , n k ) but poly ( n ) size lb w ( f , n k ): poly ( n ) size formula expressing LB ( f , n k ) with existential quantifiers witnessed feasibly by w - ∃ w follows e.g. from PV 1 ⊢ LB ( f , n k ) Fact: If tt ( f , n k ) has no poly-size constant-depth Frege proofs, then lb A ( f , n k ) has no poly-size (full) Frege proofs. 5 / 11

  19. Previous results Lower bounds: Razborov: S 2 2 ( α ) �⊢ “ LB tt ( SAT , n k )” unless cryptography breaks P.: VNC 1 �⊢ LB ( SAT , n k ) unless SIZE ( n k ) ⊆ approx “subexp NC 1 ” cek-Oliveira: ∀ k ∃ f ∈ P s.t. PV 1 �⊢ f ∈ SIZE ( cn k ) Kraj´ ıˇ Buss: PV 1 �⊢ NP = co NP unless P=NP “folklore”: V 0 �⊢ SAT ∈ P / poly 6 / 11

  20. Previous results Lower bounds: Razborov: S 2 2 ( α ) �⊢ “ LB tt ( SAT , n k )” unless cryptography breaks P.: VNC 1 �⊢ LB ( SAT , n k ) unless SIZE ( n k ) ⊆ approx “subexp NC 1 ” cek-Oliveira: ∀ k ∃ f ∈ P s.t. PV 1 �⊢ f ∈ SIZE ( cn k ) Kraj´ ıˇ Buss: PV 1 �⊢ NP = co NP unless P=NP “folklore”: V 0 �⊢ SAT ∈ P / poly Razborov-Kraj´ ıˇ cek: Propositional systems with feasible interpolation property have no p-size proofs of tt ( f , n k ) unless cryptography breaks. Raz: Resolution has no p-size proofs of tt ( f , n k ) (unconditionally). Razborov: Res ( ǫ log n ) does not have p-size proofs of tt ( f , n ω (1) ). 6 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend