protecting communications against forgery d j bernstein
play

Protecting communications against forgery D. J. Bernstein - PDF document

Protecting communications against forgery D. J. Bernstein University of Illinois at Chicago Secret-key authenticators Message m 10 50 Z , at most 1000000 digits. Sender and receiver know secret prime p , 10 39 < p < 10 40 , and


  1. Protecting communications against forgery D. J. Bernstein University of Illinois at Chicago

  2. Secret-key authenticators Message m ∈ 10 50 Z , at most 1000000 digits. Sender and receiver know secret prime p , 10 39 < p < 10 40 , and secret k ∈ Z , 0 ≤ k < 10 45 . Sender transmits ( m; a ) where a = (( m mod p ) + k ) mod 10 45 .

  3. Forger replaces ( m; a ) with ( m ′ ; a ′ ). Receiver discards ( m ′ ; a ′ ) unless a ′ = (( m ′ mod p ) + k ) mod 10 45 . If ( p; k ) is uniform: The forger has chance < 10 − 33 of fooling the receiver.

  4. How many pairs ( p; k ) satisfy a = (( m mod p ) + k ) mod 10 45 ? At least 9 · 10 37 . How many also satisfy a ′ = (( m ′ mod p ) + k ) mod 10 45 ? Fewer than 9 · 10 4 if m � = m ′ : for some ‹ ∈ {− 1 ; 0 ; 1 } have p dividing m − m ′ + 10 45 ‹ − a + a ′ .

  5. Handling multiple messages Sender and receiver know secrets p; k 1 ; k 2 ; k 3 ; : : : . Sender transmits n th message m as ( n; m; a ) where a = (( m mod p ) + k n ) mod 10 45 . (Gilbert, MacWilliams, Sloane; Wegman, Carter; Karp, Rabin)

  6. Faster system: Secrets p 0 ; k 1 ; k 2 ; : : : ∈ F where F = Z = (2 127 − 1). Transmit n th message m ∈ xF [ x ] as ( n; m; m ( p 0 ) + k n ). Generating primes in F [ x ] is easier than generating primes in Z .

  7. Unpredictability Random functions f ; u : S → T . Finite T ; uniform u . Example: f = RC6 r , uniform r . f is unpredictable if, for all fast oracle algorithms A , Pr[ A ( f ) says yes] ≈ Pr[ A ( u ) says yes].

  8. Sender and receiver know secret f ; use k n = f ( n ). Safe if f is unpredictable. Want f short : specified concisely. If every short fast f is efficiently predictable then factoring is poly-time. (Blum, Blum, Shub)

  9. Derandomization BPP = P if there is a family of sufficiently unpredictable sufficiently short fast f ’s. (Yao) Some specific families are conjectured to work. ■♥ ♠② t❛❧❦ ■ s❤♦✉❧❞ ❤❛✈❡ st❛rt❡❞ ❜② ❡♠♣❤❛s✐③✐♥❣ t❤❛t ✇❡ ❝❛♥ ❞❡t❡r♠✐♥✐st✐❝❛❧❧② ❝♦♠♣✉t❡ t❤❡ ❡①❛❝t ❛✈❡r❛❣❡ r❡s✉❧t ♦❢ ❛ ♣r♦❜❛❜✐❧✐st✐❝ ❛❧❣♦r✐t❤♠ ✉s✐♥❣ ❛ s❤♦rt r❛♥❞♦♠ ❢✉♥❝t✐♦♥✱ ❜② r✉♥♥✐♥❣ t❤r♦✉❣❤ ❛❧❧ t❤❡ ♣♦ss✐❜✐❧✐t✐❡s ❢♦r t❤❡ ❢✉♥❝t✐♦♥✳ ❚❤✐s ❛✈❡r❛❣❡ ✐s ❛♣♣r♦①✐♠❛t❡❧② t❤❡ ❛✈❡r❛❣❡ r❡s✉❧t ♦❢ t❤❡ ❛❧❣♦r✐t❤♠ ✉s✐♥❣ ❛ ✉♥✐❢♦r♠ r❛♥❞♦♠ ❢✉♥❝t✐♦♥❀ ✇❤✐❝❤✱ ❜② ❞❡☞♥✐t✐♦♥ ♦❢ ❇PP✱ ✐s ❛♣♣r♦①✐♠❛t❡❧② ✶ ♦r ✵ ❞❡♣❡♥❞✐♥❣ ♦♥ ✇❤❡t❤❡r t❤❡ ✐♥♣✉t str✐♥❣ ✐s ✐♥ t❤❡ ❧❛♥❣✉❛❣❡✳ ❚❤❡ r❛♥❞♦♠ ❢✉♥❝t✐♦♥ ❤❛s t♦ ❜❡ ✉♥♣r❡❞✐❝t❛❜❧❡ ❢♦r ❛❧❧ ❛❧❣♦r✐t❤♠s ❛s ❢❛st ❛s t❤❡ ❛❧❣♦r✐t❤♠ ✇❡ st❛rt❡❞ ✇✐t❤✱ ❜✉t st✐❧❧ s❤♦rt ❡♥♦✉❣❤ t❤❛t ✇❡ ❝❛♥ q✉✐❝❦❧② tr② ❛❧❧ t❤❡ ♣♦ss✐❜✐❧✐t✐❡s✳ ■t s❡❡♠s s✉✍❝✐❡♥t ❢♦r t❤❡ ♥✉♠❜❡r ♦❢ ♣♦ss✐❜✐❧✐t✐❡s t♦ ❜❡ r♦✉❣❤❧② t❤❡ ❢♦✉rt❤ ♣♦✇❡r ♦❢ t❤❡ r✉♥ t✐♠❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❛❧❣♦r✐t❤♠✳

  10. � � � � � The Diffie-Hellman system Receiver’s Secret g bc public key g c Sender’s Receiver’s secret b secret c Sender’s � Secret g bc public key g b

  11. Can find 300-digit prime q such that ‘ = 2 q + 1 is prime. Take g = image of 4 in ( Z =‘ ) ∗ . Or find 50-digit prime q , 300-digit prime ‘ ≡ 1 (mod q ). Take g of order q in ( Z =‘ ) ∗ .

  12. Or find 150-digit prime q such that ‘ = 2 q − 1 is prime. Take g of order q in ( F ‘ 2 ) ∗ . Or find 50-digit primes q; ‘ and point g of order q on an elliptic curve over Z =‘ .

  13. � � � Public-key signatures Message m � Signed Secret b message m; s Public � Verification key n

  14. ElGamal signatures Public functions H; I . Public g of prime order q . Public key n = g b . ( r; u ) is a signature of m if r = g H ( m ) u n I ( r ) u , 0 < u < q . Signer chooses r = g e for uniform random e .

  15. Modify signatures to save space: ( t; u ) is a signature of m if t = I ( g H ( m ) u n tu ), 0 < u < q . Two elements of Z =q instead of one element and one power of g . (Schnorr, Kravitz) ■ s❛✐❞ ❑r♦✈❡t③ ✇❤❡♥ ■ ❣❛✈❡ t❤✐s t❛❧❦✳ ▼② ❛♣♦❧♦❣✐❡s t♦ ❑r♦✈❡t③ ❛♥❞ ❑r❛✈✐t③✳ ▼② ♦♥❧② ❡①❝✉s❡ ✐s t❤❛t ■ ✇❛s ♣r❡♣❛r✐♥❣ t❤r❡❡ t❛❧❦s ✐♥ ♦♥❡ ❢r❛♥t✐❝ ✇❡❡❦✳

  16. Rabin-Williams signatures Secret 150-digit primes p; q with p mod 8 = 3, q mod 8 = 7. Public key n = pq . ( r; f ; s ) is a signature of m if n divides s 2 − f H ( r; m ) and f ∈ {− 2 ; − 1 ; 1 ; 2 } . Signer chooses r randomly.

  17. Modify signatures to save time: ( r; h; f ; s; t ) is a signature of m if f ∈ {− 2 ; − 1 ; 1 ; 2 } , s; t not too large, h = H ( r; m ), and s 2 = f h + tn . Verifier computes s 2 − f h − tn modulo a secret 40-digit prime.

  18. Assume 40-digit r . If forger has generic attack with forgery chance ≥ 10 − 10 using 10 10 valid signatures and 10 10 calls to H then forger can factor n at about the same speed with chance ≥ 10 − 11 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend