probability and statistics

Probability and Statistics Tutorial 3: week 4 Problem 6A () > - PowerPoint PPT Presentation

Probability and Statistics Tutorial 3: week 4 Problem 6A () > 1 0.2 ANSWER: Use the cumulative distribution for 1 : () 2 ~


  1. Probability and Statistics Tutorial 3: week 4

  2. Problem 6A (๐›) ๐‘ธ ๐‘ผ ๐Ÿ > ๐Ÿ’ ๐’๐’‹๐’๐’—๐’–๐’‡๐’• โ€ข ๐‘ˆ 1 โˆผ ๐น๐‘ฆ๐‘ž 0.2 ANSWER: โ€ข Use the cumulative distribution for ๐‘ˆ 1 : ๐บ(๐’–) โ€ข ๐‘ˆ 2 ~ ๐น๐‘ฆ๐‘ž 0.25 โ€ข ๐‘„ ๐‘ˆ 1 > 3 = 1 โˆ’ ๐‘„(๐‘ผ ๐Ÿ โ‰ค ๐Ÿ’) = 1 โ€“ ๐บ(3) โ€ข ๐‘ˆ 1 ๐‘๐‘œ๐‘’ ๐‘ˆ 2 ๐‘๐‘ ๐‘“ ๐‘—๐‘œ๐‘’๐‘“๐‘ž๐‘“๐‘œ๐‘’๐‘“๐‘œ๐‘ข โ€ข Analytically: ๐บ ๐‘ข = 1 โˆ’ ๐‘“ โˆ’๐œ‡๐‘ฆ = 1 โˆ’ 1 โˆ’ ๐‘“ โˆ’0.2ร—3 = 0.54881 R code: 1 โ€“ pexp(t,rate) 1- pexp(3,0.2)

  3. Problem 6B (๐œ) ๐‘ธ ๐‘ผ ๐Ÿ‘ < ๐Ÿ“ ๐’๐’‹๐’๐’—๐’–๐’‡๐’• โ€ข ๐‘ˆ 1 โˆผ ๐น๐‘ฆ๐‘ž 0.2 ANSWER: โ€ข Use the cumulative distribution for ๐‘ˆ 1 : ๐บ(๐’–) โ€ข ๐‘ˆ 2 ~ ๐น๐‘ฆ๐‘ž 0.25 โ€ข ๐‘„ ๐‘ˆ 2 < 4 = ๐‘„(๐‘ˆ 2 โ‰ค ๐Ÿ“) = 1 โ€“ ๐บ(4) โ€ข ๐‘ˆ 1 ๐‘๐‘œ๐‘’ ๐‘ˆ 2 ๐‘๐‘ ๐‘“ ๐‘—๐‘œ๐‘’๐‘“๐‘ž๐‘“๐‘œ๐‘’๐‘“๐‘œ๐‘ข (WHY?) โ€ข Analytically: ๐บ ๐‘ข = 1 โˆ’ ๐‘“ โˆ’๐œ‡ 2 ๐‘ฆ = 1 โˆ’ ๐‘“ โˆ’0.25ร—4 = 0.632 R code: pexp(t,rate) pexp(4,rate = 0.25)

  4. Normal Distribution ๐‘ผ๐’Š๐’‡ ๐‘ถ๐’‘๐’”๐’๐’ƒ๐’Ž ๐‘ฌ๐’‹๐’•๐’–๐’”๐’‹๐’„๐’—๐’–๐’‹๐’‘๐’ โ€ข Let R be a random variable measuring the reading speed of students โ€ข Bell shaped; โ€ข Symmetric about the mean ๐œˆ โ€ข Shape (height and width) given by the standard deviation: ๐œ โ€ข Normally given by: ๐‘„ ๐‘Œ โ‰ค ๐‘ = F ๐‘ โ€ข For calculations, we use the standard Normal curve โ€ข ๐‘Ž โˆผ ๐‘‚(0, 1)

  5. Problem 7A ๐’ƒ ๐‘ธ ๐‘บ < ๐Ÿ๐Ÿ๐Ÿ ? ANSWER: โ€ข Let R be a random variable measuring the reading speed of students โ€ข First, we standardize. What does this mean? โ€ข What is the distribution of R? ๐‘† โˆผ ๐‘‚ 125, 24 2 โ†’ ๐‘Ž โˆผ ๐‘‚(0, 1) (WHY?) ๐‘† โˆผ ๐‘‚(125, 24 2 ) ๐‘† โˆผ ๐‘‚ 125, 24 2 โ†’ ๐‘Ž โˆผ ๐‘‚(0, 1) ๐‘„ ๐‘† < 100 = ๐‘„ ๐‘† โ‰ค 100 = ๐‘„ ๐‘Ž < 100โˆ’125 100โˆ’125 100โˆ’125 ๐‘Ž = ๐‘Œ โˆ’ ๐œˆ = ๐บ = ฮฆ 24 24 24 ๐œ Use R ๐‘Ž = ๐‘Œ โˆ’ 125 ๐‘ž๐‘œ๐‘๐‘ ๐‘›( 100โˆ’125 , ๐‘›๐‘“๐‘๐‘œ = 0, ๐‘ก๐‘’ = 1) = 0.1488 24 24 Or Skip standardization : ๐‘ž๐‘œ๐‘๐‘ ๐‘›(100, ๐‘›๐‘“๐‘๐‘œ = 125, ๐‘ก๐‘’ = 24)

  6. Problem 7b ๐’„ ๐‘ธ ๐‘บ > ๐Ÿ๐Ÿ“๐Ÿ ? โ€ข Let R be a random variable measuring the reading speed of students ANSWER: โ€ข What is the distribution of R? ๐‘† โˆผ ๐‘‚(125, 24 2 ) ๐‘† โˆผ ๐‘‚ 125, 24 2 โ†’ ๐‘Ž โˆผ ๐‘‚(0, 1) ๐‘Ž = ๐‘Œ โˆ’ ๐œˆ ๐œ ๐‘„ ๐‘† > 140 = 1 โˆ’ ๐‘„ ๐‘† โ‰ค 140 ๐‘Ž = ๐‘Œ โˆ’ 125 24 Skipping standardization: 1 โˆ’ ๐‘ž๐‘œ๐‘๐‘ ๐‘›(140, ๐‘›๐‘“๐‘๐‘œ = 125, ๐‘ก๐‘’ = 24) = 0.2660

  7. Problem 7c ๐’… ๐‘ธ ๐Ÿ๐Ÿ๐Ÿ โ‰ค ๐‘บ โ‰ค ๐Ÿ๐Ÿ’๐Ÿ ? โ€ข Let R be a random variable measuring the reading speed of students โ€ข What is the distribution of R? ๐‘† โˆผ ๐‘‚(125, 24 2 ) ๐‘† โˆผ ๐‘‚ 125, 24 2 โ†’ ๐‘Ž โˆผ ๐‘‚(0, 1) ANSWER: ๐‘Ž = ๐‘Œ โˆ’ ๐œˆ ๐‘ธ ๐Ÿ๐Ÿ๐Ÿ โ‰ค ๐‘บ โ‰ค ๐Ÿ๐Ÿ’๐Ÿ = F 130 โˆ’ F(110) ๐œ ๐‘Ž = ๐‘Œ โˆ’ 125 Skipping standardization: 24 ๐‘ž๐‘œ๐‘๐‘ ๐‘›(130, ๐‘›๐‘“๐‘๐‘œ = 125, ๐‘ก๐‘’ = 24) - ๐‘ž๐‘œ๐‘๐‘ ๐‘› 110, ๐‘›๐‘“๐‘๐‘œ = 125, ๐‘ก๐‘’ = 24 = 0.317

  8. Problem 7d ๐’„ ๐‘ธ(๐‘บ > ๐Ÿ‘๐Ÿ๐Ÿ)? โ€ข Let R be a random variable measuring the reading speed of students โ€ข What is the distribution of R? ๐‘† โˆผ ๐‘‚(125, 24 2 ) ๐‘† โˆผ ๐‘‚ 125, 24 2 โ†’ ๐‘Ž โˆผ ๐‘‚(0, 1) ANSWER: ๐‘Ž = ๐‘Œ โˆ’ ๐œˆ ๐‘ธ ๐‘บ > ๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ โˆ’ ๐‘ธ ๐‘บ โ‰ค ๐Ÿ‘๐Ÿ๐Ÿ = 1 โˆ’ F(200) ๐œ ๐‘Ž = ๐‘Œ โˆ’ 125 Skipping standardization: 24 1 - ๐‘ž๐‘œ๐‘๐‘ ๐‘› 200, ๐‘›๐‘“๐‘๐‘œ = 125, ๐‘ก๐‘’ = 24 = 0.00089

  9. Problem 8A and B ๐‘ธ(๐’€ ๐Ÿ > ๐’ƒ) โ€ข ๐‘Œ 1 โˆผ ๐น๐‘ฆ๐‘ž ๐œ‡ 1 Hint: use the analytical form of the cdf: โ€ข ๐‘Œ 2 ~ ๐น๐‘ฆ๐‘ž ๐œ‡ 2 ๐บ ๐‘ = 1 โˆ’ ๐‘“ ๐œ‡ 1 ๐‘ โ€ข ๐‘Œ 1 ๐‘๐‘œ๐‘’ ๐‘Œ 2 ๐‘๐‘ ๐‘“ ๐‘—๐‘œ๐‘’๐‘“๐‘ž๐‘“๐‘œ๐‘’๐‘“๐‘œ๐‘ข ANSWER: โ€ข Analytically: ๐‘„ ๐‘Œ 1 > ๐‘ = 1 โˆ’ ๐‘„ ๐‘Œ โ‰ค ๐‘ = 1 โˆ’ ๐บ(๐‘) = 1 โˆ’ 1 โˆ’ ๐‘“ โˆ’๐œ‡ 1 ๐‘ = ๐‘“ โˆ’๐œ‡ 1 ๐‘ (same for B but with ๐œ‡ 2

  10. Problem 8c ๐’‚ = ๐’๐’‹๐’ ๐’€ ๐Ÿ , ๐’€ ๐Ÿ‘ ๐‘ธ ๐’‚ > ๐’ƒ ? โ€ข ๐‘Œ 1 โˆผ ๐น๐‘ฆ๐‘ž ๐œ‡ 1 Hint: if Z is minimum of ๐’€ ๐Ÿ ๐’ƒ๐’๐’† ๐’€ ๐Ÿ‘ , then Z can only be larger than some โ€˜aโ€™ ifโ€ฆโ€ฆ. โ€ข ๐‘Œ 2 ~ ๐น๐‘ฆ๐‘ž ๐œ‡ 2 (THINK): โ€ข ๐‘Œ 1 ๐‘๐‘œ๐‘’ ๐‘Œ 2 ๐‘๐‘ ๐‘“ ๐‘—๐‘œ๐‘’๐‘“๐‘ž๐‘“๐‘œ๐‘’๐‘“๐‘œ๐‘ข ANSWER: โ€ข โ€ฆif both ๐‘Œ 1 ๐‘๐‘œ๐‘’ ๐‘Œ 2 are larger than a. โ€ข ๐‘„ ๐‘Ž > ๐‘ = ๐‘„(๐‘Œ 1 > ๐‘ โˆฉ ๐‘Œ 2 > ๐‘) = P X 1 > a ร— ๐‘„ ๐‘Œ 2 > ๐‘ (ind.) = ๐‘“ โˆ’๐œ‡ 1 ๐‘ ๐‘“ โˆ’๐œ‡ 2 ๐‘ = ๐‘“ โˆ’๐‘(๐œ‡ 1 +๐œ‡ 2 )

  11. Problem 8d ๐‘ซ๐‘ฌ๐‘ฎ ๐’‘๐’ˆ ๐’‚ โ€ข ๐‘Œ 1 โˆผ ๐น๐‘ฆ๐‘ž ๐œ‡ 1 ๐‘ฎ ๐’ƒ = ๐‘„ ๐‘Ž โ‰ค ๐‘ = 1 โˆ’ ๐‘„ ๐‘Ž > ๐‘ = 1 โˆ’ ๐‘“ โˆ’๐‘(๐œ‡ 1 +๐œ‡ 2 ) โ€ข ๐‘Œ 2 ~ ๐น๐‘ฆ๐‘ž ๐œ‡ 2 PDF of Z How do we move from cdf to pdf? โ€ข ๐‘Œ 1 ๐‘๐‘œ๐‘’ ๐‘Œ 2 ๐‘๐‘ ๐‘“ ๐‘—๐‘œ๐‘’๐‘“๐‘ž๐‘“๐‘œ๐‘’๐‘“๐‘œ๐‘ข ANSWER: differentiation!!!!! ๐‘” ๐‘ = ๐‘’๐บ ๐‘ ๐‘’๐‘ ๐‘” ๐‘ = ๐œ‡ 1 + ๐œ‡ 2 ๐‘“ โˆ’๐‘(๐œ‡ 1 +๐œ‡ 2 ) ๐’‚ โˆผ ๐Ÿ๐ฒ๐ช ๐ ๐Ÿ + ๐ ๐Ÿ‘

  12. Problem 6C (l (later) ๐œ ๐‘ผ๐’: ๐’™๐’ƒ๐’‹๐’–๐’‹๐’๐’‰ ๐’–๐’‹๐’๐’‡ ๐’—๐’๐’–๐’‹๐’Ž ๐’‡๐’‹๐’–๐’Š๐’‡๐’” ๐’„๐’—๐’• ๐Ÿ ๐’‘๐’” ๐’„๐’—๐’• ๐Ÿ‘: โ€ข ๐‘ˆ 1 โˆผ ๐น๐‘ฆ๐‘ž 0.2 ANSWER: โ€ข ๐‘ˆ 2 ~ ๐น๐‘ฆ๐‘ž 0.25 ๐‘ผ๐’ = ๐’๐’‹๐’ ๐‘ผ ๐Ÿ , ๐‘ผ ๐Ÿ‘ What is is th the dis istribution of of Tm? โ€ข ๐‘ˆ 1 ๐‘๐‘œ๐‘’ ๐‘ˆ 2 ๐‘๐‘ ๐‘“ ๐‘—๐‘œ๐‘’๐‘“๐‘ž๐‘“๐‘œ๐‘’๐‘“๐‘œ๐‘ข ๐‘ผ๐’ โˆผ ๐’‡๐’š๐’’(๐ ๐Ÿ + ๐ ๐Ÿ‘ ) โ€ข ๐‘„ ๐‘ˆ๐‘› < 2 = 1 โˆ’ e 2 0.45 = 0.593 (WHY?)

  13. THE END โ€ข ANY QUESTIONS??

Recommend


More recommend