probabilistic systems
play

Probabilistic systems a place where categories meet probability Ana - PowerPoint PPT Presentation

Probabilistic systems a place where categories meet probability Ana Sokolova SOS group, Radboud University Nijmegen University Dortmund, CS Kolloquium, 12.6.6 p.1/32 Outline Introduction - probabilistic systems and coalgebras


  1. � � � � � Bisimulation - LTS Consider the LTS a a �� �� �� �� ���� � • t 2 a • s 0 • t 0 b b b • s 1 • t 1 • t 3 University Dortmund, CS Kolloquium, 12.6.6 – p.10/32

  2. � � � � � Bisimulation - LTS Consider the LTS a a �� �� �� �� ���� � • t 2 a • s 0 • t 0 b b b • s 1 • t 1 • t 3 The states s 0 and t 0 are bisimilar since there is a bisimulation R relating them... University Dortmund, CS Kolloquium, 12.6.6 – p.10/32

  3. � � � � � Bisimulation - LTS Consider the LTS a a �� �� �� �� ���� � • t 2 a • s 0 • t 0 b b b • s 1 • t 1 • t 3 Transfer condition: � s, t � ∈ R = ⇒ → s ′ ⇒ ( ∃ t ′ ) t a a → t ′ , � s ′ , t ′ � ∈ R, s → t ′ ⇒ ( ∃ s ′ ) s a a → s ′ , � s ′ , t ′ � ∈ R t University Dortmund, CS Kolloquium, 12.6.6 – p.10/32

  4. � � � � � � Bisimulation - generative Consider the generative systems a [ 1 a [ 1 2 ] 6 ] a [ 1 2 ] �� �� �� ���� �� � • t 2 • s 0 • t 0 b [ 1 b [ 1 b [ 1 a [ 1 2 ] 2 ] 2 ] 3 ] • s 1 • t 1 • t 3 University Dortmund, CS Kolloquium, 12.6.6 – p.11/32

  5. � � � � � � Bisimulation - generative Consider the generative systems a [ 1 a [ 1 2 ] 6 ] a [ 1 2 ] �� �� �� ���� �� � • t 2 • s 0 • t 0 b [ 1 b [ 1 b [ 1 a [ 1 2 ] 2 ] 2 ] 3 ] • s 1 • t 1 • t 3 The states s 0 and t 0 are bisimilar, and so are s 0 and t 2 , since there is a bisimulation R relating them... University Dortmund, CS Kolloquium, 12.6.6 – p.11/32

  6. � � � � � � Bisimulation - generative Consider the generative systems a [ 1 a [ 1 2 ] 6 ] a [ 1 2 ] �� �� �� ���� �� � • t 2 • s 0 • t 0 b [ 1 b [ 1 b [ 1 a [ 1 2 ] 2 ] 2 ] 3 ] • s 1 • t 1 • t 3 Transfer condition: � s, t � ∈ R = ⇒ s ❀ µ ⇒ ( ∃ µ ′ ) t ❀ µ ′ , µ ≡ R,A µ ′ University Dortmund, CS Kolloquium, 12.6.6 – p.11/32

  7. � � � � � � � � � � � � � � � � Bisimulation - simple Segala Consider the simple Segala systems a a �� 1 �� �� �� ���� 3 2 a 3 � • s 0 • t 0 • t 2 b b b • s 1 • t 1 • t 3 University Dortmund, CS Kolloquium, 12.6.6 – p.12/32

  8. � � � � � � � � � � � � � � � � Bisimulation - simple Segala Consider the simple Segala systems a a �� 1 �� �� �� ���� 3 2 a 3 � • s 0 • t 0 • t 2 b b b • s 1 • t 1 • t 3 The states s 0 and t 0 are bisimilar, since there is a bisimulation R relating them... University Dortmund, CS Kolloquium, 12.6.6 – p.12/32

  9. � � � � � � � � � � � � � � � � Bisimulation - simple Segala Consider the simple Segala systems a a �� 1 �� �� �� ���� 3 2 a 3 � • s 0 • t 0 • t 2 b b b • s 1 • t 1 • t 3 Transfer condition: � s, t � ∈ R = ⇒ a a s → µ ⇒ ( ∃ µ ′ ) t → µ ′ , µ ≡ R µ ′ University Dortmund, CS Kolloquium, 12.6.6 – p.12/32

  10. Coalgebraic bisimulation A bisimulation between � S, α : S → F S � and � T, β : S → F S � is R ⊆ S × T such that ∃ γ : University Dortmund, CS Kolloquium, 12.6.6 – p.13/32

  11. � � � � � Coalgebraic bisimulation A bisimulation between � S, α : S → F S � and � T, β : S → F S � is R ⊆ S × T such that ∃ γ : π 1 π 2 � T S R γ α β � F T F S F R F π 1 F π 2 University Dortmund, CS Kolloquium, 12.6.6 – p.13/32

  12. � � � � � Coalgebraic bisimulation A bisimulation between � S, α : S → F S � and � T, β : S → F S � is R ⊆ S × T such that ∃ γ : π 1 π 2 � T S R γ α β � F T F S F R F π 1 F π 2 Transfer condition: � s, t � ∈ R = ⇒ � α ( s ) , β ( t ) � ∈ Rel( F )( R ) University Dortmund, CS Kolloquium, 12.6.6 – p.13/32

  13. � � � � � Coalgebraic bisimulation A bisimulation between � S, α : S → F S � and � T, β : S → F S � is R ⊆ S × T such that ∃ γ : π 1 π 2 � T S R γ α β � F T F S F R F π 1 F π 2 Theorem: Coalgebraic and concrete bisimilarity coincide ! University Dortmund, CS Kolloquium, 12.6.6 – p.13/32

  14. � � � � � � � � � � Expressiveness simple Segala system → Segala system • a � � � � � � � � p 1 p n � � � � p 2 ... • • • University Dortmund, CS Kolloquium, 12.6.6 – p.14/32

  15. � � � � � � � � � � � � � � � � � � � � Expressiveness simple Segala system → Segala system • • a � � � � � � � � � � � � � � � � a [ p 1 ] a [ p n ] p 1 p n � � � � � � � � p 2 a [ p 2 ] ... ... • • • • • • University Dortmund, CS Kolloquium, 12.6.6 – p.14/32

  16. � � � � � � � � � � � � � � � � � � � � Expressiveness simple Segala system → Segala system • • a � � � � � � � � � � � � � � � � a [ p 1 ] a [ p n ] p 1 p n � � � � � � � � p 2 a [ p 2 ] ... ... • • • • • • When do we consider one type of systems more expressive than another? University Dortmund, CS Kolloquium, 12.6.6 – p.14/32

  17. Comparison criterion Coalg F → Coalg G T if there is a mapping � S, α : S → F S � �→ � S, ˜ α : S → G S � that preserves and reflects bisimilarity University Dortmund, CS Kolloquium, 12.6.6 – p.15/32

  18. Comparison criterion Coalg F → Coalg G T if there is a mapping � S, α : S → F S � �→ � S, ˜ α : S → G S � that preserves and reflects bisimilarity s � S,α � ∼ t � T,β � ⇐ ⇒ s T � S,α � ∼ t T � T,β � University Dortmund, CS Kolloquium, 12.6.6 – p.15/32

  19. Comparison criterion Coalg F → Coalg G T if there is a mapping � S, α : S → F S � �→ � S, ˜ α : S → G S � that preserves and reflects bisimilarity Theorem: An injective natural transformation F ⇒ G is sufficient for Coalg F → Coalg G University Dortmund, CS Kolloquium, 12.6.6 – p.15/32

  20. Comparison criterion Coalg F → Coalg G T if there is a mapping � S, α : S → F S � �→ � S, ˜ α : S → G S � that preserves and reflects bisimilarity Theorem: An injective natural transformation F ⇒ G is sufficient for Coalg F → Coalg G proof via cocongruences - behavioral equivalence University Dortmund, CS Kolloquium, 12.6.6 – p.15/32

  21. Example P τ Indeed SSeg → Seg since P ( A × D ) ⇒ PD ( A × ) is injective for University Dortmund, CS Kolloquium, 12.6.6 – p.16/32

  22. Example P τ Indeed SSeg → Seg since P ( A × D ) ⇒ PD ( A × ) is injective for τ ( A × D ) ⇒ D ( A × ) given by University Dortmund, CS Kolloquium, 12.6.6 – p.16/32

  23. Example P τ Indeed SSeg → Seg since P ( A × D ) ⇒ PD ( A × ) is injective for τ ( A × D ) ⇒ D ( A × ) given by τ X ( � a, µ � ) = δ a × µ , where University Dortmund, CS Kolloquium, 12.6.6 – p.16/32

  24. Example P τ Indeed SSeg → Seg since P ( A × D ) ⇒ PD ( A × ) is injective for τ ( A × D ) ⇒ D ( A × ) given by τ X ( � a, µ � ) = δ a × µ , where µ × µ ′ ( � x, x ′ � ) = µ ( x ) · µ ′ ( x ′ ) University Dortmund, CS Kolloquium, 12.6.6 – p.16/32

  25. Example P τ Indeed SSeg → Seg since P ( A × D ) ⇒ PD ( A × ) is injective for τ ( A × D ) ⇒ D ( A × ) given by τ X ( � a, µ � ) = δ a × µ , where µ × µ ′ ( � x, x ′ � ) = µ ( x ) · µ ′ ( x ′ ) and δ a is Dirac distribution for a University Dortmund, CS Kolloquium, 12.6.6 – p.16/32

  26. � � � � � � � � � The hierarchy... MG � ���������������� � � � � � PZ � ����� � � � � � Seg Bun � � � � � � � � � � � � � � � � SSeg Var Alt � ����� � ����� � � � � � � � � � � � React LTS Gen Str � ������ � � � � � DLTS MC University Dortmund, CS Kolloquium, 12.6.6 – p.17/32

  27. � � � � � � � � � The hierarchy... MG � ���������������� � � � � � PZ � ����� � � � � � Seg Bun � � � � � � � � � � � � � � � � SSeg Var Alt � ����� � ����� � � � � � � � � � � � React LTS Gen Str � ������ � � � � � DLTS MC * Falk Bartels, AS, Erik de Vink University Dortmund, CS Kolloquium, 12.6.6 – p.17/32

  28. LT/BT spectrum Bisimilarity is not the only semantics... University Dortmund, CS Kolloquium, 12.6.6 – p.18/32

  29. � � � LT/BT spectrum Are these non-deterministic systems equal ? • y • x � a a � � ���� a � � � • • • � b c � ���� � � c b � � • • • • University Dortmund, CS Kolloquium, 12.6.6 – p.18/32

  30. � � � LT/BT spectrum Are these non-deterministic systems equal ? • y • x � a a � � ���� a � � � • • • � b c � ���� � � c b � � • • • • x and y are: • different wrt. bisimilarity University Dortmund, CS Kolloquium, 12.6.6 – p.18/32

  31. � � � LT/BT spectrum Are these non-deterministic systems equal ? • y • x � a a � � ���� a � � � • • • � b c � ���� � � c b � � • • • • x and y are: • different wrt. bisimilarity, but • equivalent wrt. trace semantics tr( x ) = tr( y ) = { ab, ac } University Dortmund, CS Kolloquium, 12.6.6 – p.18/32

  32. Traces - LTS For LTS with explicit termination (NA) trace = the set of all possible linear behaviors University Dortmund, CS Kolloquium, 12.6.6 – p.19/32

  33. � � � Traces - LTS For LTS with explicit termination (NA) trace = the set of all possible linear behaviors Example: a b �� �� �� �� ���� a � • y • x � tr( x ) = a + · tr( y ) = a + · b ∗ tr( y ) = b ∗ , University Dortmund, CS Kolloquium, 12.6.6 – p.19/32

  34. Traces - generative For generative probabilistic systems with ex. termination trace = sub-probability distribution over possible linear behaviors University Dortmund, CS Kolloquium, 12.6.6 – p.20/32

  35. � � � � � � Traces - generative For generative probabilistic systems with ex. termination trace = sub-probability distribution over possible linear behaviors Example: a [ 1 2 ] ���� �� a [ 1 3 ] • y �� �→ 1 • x tr( x ) : � 3 � 1 � � � 3 b [ 1 1 � 3 ] � � 2 � a �→ 1 3 · 1 � � 2 • z � �� �� �� a 2 �→ 1 3 · 1 2 · 1 2 a [1] · · · University Dortmund, CS Kolloquium, 12.6.6 – p.20/32

  36. Trace of a coalgebra ? University Dortmund, CS Kolloquium, 12.6.6 – p.21/32

  37. Trace of a coalgebra ? • Power&Turi ’99 • Jacobs ’04 • Hasuo& Jacobs ’05 • Ichiro Hasuo, Bart Jacobs, AS: Generic Trace Theory, CMCS’06 University Dortmund, CS Kolloquium, 12.6.6 – p.21/32

  38. Trace of a coalgebra ? • Power&Turi ’99 • Jacobs ’04 • Hasuo& Jacobs ’05 • Ichiro Hasuo, Bart Jacobs, AS: Generic Trace Theory, CMCS’06 main idea: coinduction in a Kleisli category University Dortmund, CS Kolloquium, 12.6.6 – p.21/32

  39. � � � � Coinduction F (beh) F X F Z � � � � � � � ∼ α = X � � � � � � � Z beh system final coalgebra University Dortmund, CS Kolloquium, 12.6.6 – p.22/32

  40. � � � � Coinduction F (beh) F X F Z � � � � � � � ∼ α = X � � � � � � � Z beh system final coalgebra • finality = ∃ ! (morphism for any F - coalgebra) • beh gives the behavior of the system • this yields final coalgebra semantics University Dortmund, CS Kolloquium, 12.6.6 – p.22/32

  41. � � � � Coinduction F (beh) F X F Z � � � � � � � ∼ α = X � � � � � � � Z beh system final coalgebra • f.c.s. in Sets = bisimilarity • f.c.s. in a Kleisli category = trace semantics University Dortmund, CS Kolloquium, 12.6.6 – p.22/32

  42. Types of systems For trace semantics systems are suitably modelled as coalgebras in Sets c → T F X X University Dortmund, CS Kolloquium, 12.6.6 – p.23/32

  43. Types of systems For trace semantics systems are suitably modelled as coalgebras in Sets c → T F X X monad - branching type University Dortmund, CS Kolloquium, 12.6.6 – p.23/32

  44. Types of systems For trace semantics systems are suitably modelled as coalgebras in Sets c → T F X X monad - branching type functor - linear i/o type University Dortmund, CS Kolloquium, 12.6.6 – p.23/32

  45. Types of systems For trace semantics systems are suitably modelled as coalgebras in Sets c → T F X X monad - branching type functor - linear i/o type needed: distributive law FT ⇒ T F University Dortmund, CS Kolloquium, 12.6.6 – p.23/32

  46. Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  47. � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x � � � ������� � a a � � � � • • � � ������ � � a b � b � � � � � University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  48. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  49. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � c → PF X X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  50. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � c → PF X X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  51. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � PF c c → PF X → PFPF X X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  52. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � PF c c → PF X → PFPF X X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  53. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � c PF c d.l. X → PF X → PFPF X → PPFF X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  54. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � c PF c d.l. X → PF X → PFPF X → PPFF X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  55. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � c PF c d.l. m.m. X → PF X → PFPF X → PPFF X → PFF X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  56. � � � � � Distributive law is needed since branching is irrelevant: LTS with � - PF = P (1 + A × ) • x • x � � � ������� � a a � � � � • • aa ab � � ������ � � a b � b � � � � � � c PF c d.l. m.m. X → PF X → PFPF X → PPFF X → PFF X University Dortmund, CS Kolloquium, 12.6.6 – p.24/32

  57. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  58. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. • objects - sets f • arrows - X → Y are functions f : X → T Y University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  59. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. FT ⇒ T F : F lifts to F K ℓ ( T ) on K ℓ ( T ) . University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  60. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. FT ⇒ T F : F lifts to F K ℓ ( T ) on K ℓ ( T ) . c Hence: coalgebra X → F K ℓ ( T ) X in K ℓ ( T ) !!! University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  61. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. FT ⇒ T F : F lifts to F K ℓ ( T ) on K ℓ ( T ) . c Hence: coalgebra X → F K ℓ ( T ) X in K ℓ ( T ) !!! c in K ℓ ( T ) : → F K X ℓ ( T ) X University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  62. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. FT ⇒ T F : F lifts to F K ℓ ( T ) on K ℓ ( T ) . c Hence: coalgebra X → F K ℓ ( T ) X in K ℓ ( T ) !!! c in K ℓ ( T ) : → F K X ℓ ( T ) X University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  63. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. FT ⇒ T F : F lifts to F K ℓ ( T ) on K ℓ ( T ) . c Hence: coalgebra X → F K ℓ ( T ) X in K ℓ ( T ) !!! F K ℓ ( T ) c c in K ℓ ( T ) : → F K → F K ℓ ( T ) F K X ℓ ( T ) X ℓ ( T ) X University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  64. Distributive law c is needed for X → T F X to be a coalgebra in the Kleisli category K ℓ ( T ) .. FT ⇒ T F : F lifts to F K ℓ ( T ) on K ℓ ( T ) . c Hence: coalgebra X → F K ℓ ( T ) X in K ℓ ( T ) !!! F K ℓ ( T ) c c in K ℓ ( T ) : → F K → F K ℓ ( T ) F K ℓ ( T ) X → · · · X ℓ ( T ) X University Dortmund, CS Kolloquium, 12.6.6 – p.25/32

  65. � � Main theorem - traces If ♣ , then F K ℓ ( T ) I F K ℓ ( T ) I η I ◦ α ∼ ∼ η F I ◦ α − 1 = = I I is initial is final in K ℓ ( T ) University Dortmund, CS Kolloquium, 12.6.6 – p.26/32

  66. � � Main theorem - traces If ♣ , then F K ℓ ( T ) I F K ℓ ( T ) I η I ◦ α ∼ ∼ η F I ◦ α − 1 = = I I is initial is final in K ℓ ( T ) ∼ = [ α : F I → I denotes the initial F -algebra in Sets ] University Dortmund, CS Kolloquium, 12.6.6 – p.26/32

  67. � � Main theorem - traces If ♣ , then F K ℓ ( T ) I F K ℓ ( T ) I η I ◦ α ∼ ∼ η F I ◦ α − 1 = = I I is initial is final in K ℓ ( T ) ∼ = [ α : F I → I denotes the initial F -algebra in Sets ] proof: via limit-colimit coincidence Smyth&Plotkin ’82 University Dortmund, CS Kolloquium, 12.6.6 – p.26/32

  68. The assumptions ♣ : • A monad T s.t. K ℓ ( T ) is DCpo ⊥ -enriched left-strict composition University Dortmund, CS Kolloquium, 12.6.6 – p.27/32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend