prediction uncertainty in the bornhuetter ferguson claims
play

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving - PowerPoint PPT Presentation

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method Daniel Alai Michael Merz Mario W uthrich ETH Zurich August 1, 2009 D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 1 / 18


  1. Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method Daniel Alai Michael Merz Mario W¨ uthrich ETH Zurich August 1, 2009 D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 1 / 18

  2. Overview Data and notation. Model considerations. The Bornhuetter-Ferguson predictor. Maximum likelihood estimation of the model parameters. Prediction uncertainty. Numerical example. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 2 / 18

  3. The Data Let X i , j denote the incremental claims of accident year i ∈ { 0 , 1 , . . . , I } and development year j ∈ { 0 , 1 , . . . , I } . At time I , we have observations D I = { X i , j , i + j ≤ I } . We predict the corresponding lower triangle { X i , j , i + j > I } . Define C i , j to be the cumulative claims of accident year i up to development year j , j � C i , j = X i , k . k =0 D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 3 / 18

  4. The Data Let X i , j denote the incremental claims of accident year i ∈ { 0 , 1 , . . . , I } and development year j ∈ { 0 , 1 , . . . , I } . At time I , we have observations D I = { X i , j , i + j ≤ I } . We predict the corresponding lower triangle { X i , j , i + j > I } . Define C i , j to be the cumulative claims of accident year i up to development year j , j � C i , j = X i , k . k =0 D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 3 / 18

  5. The Data Let X i , j denote the incremental claims of accident year i ∈ { 0 , 1 , . . . , I } and development year j ∈ { 0 , 1 , . . . , I } . At time I , we have observations D I = { X i , j , i + j ≤ I } . We predict the corresponding lower triangle { X i , j , i + j > I } . Define C i , j to be the cumulative claims of accident year i up to development year j , j � C i , j = X i , k . k =0 D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 3 / 18

  6. The Data Let X i , j denote the incremental claims of accident year i ∈ { 0 , 1 , . . . , I } and development year j ∈ { 0 , 1 , . . . , I } . At time I , we have observations D I = { X i , j , i + j ≤ I } . We predict the corresponding lower triangle { X i , j , i + j > I } . Define C i , j to be the cumulative claims of accident year i up to development year j , j � C i , j = X i , k . k =0 D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 3 / 18

  7. A Visual Representation accident development year j year i 0 . . . . . . j I 0 realizations of . . r.v. X i , j , i + j ≤ I . i . . . predicted r.v. X i , j , i + j > I I Figure: Claims development triangle. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 4 / 18

  8. Model Assumptions (ODP) The incremental claims X i , j are independent overdispersed Poisson distributed (ODP) with E [ X i , j ] = m i , j = µ i γ j , Var ( X i , j ) = φ m i , j , and � I j =0 γ j = 1. ν k are independent unbiased estimators of the expected ultimate ˆ claim µ k = E [ C k , I ] for all k ∈ { 0 , . . . , I } . X i , j and ˆ ν k are independent for all i , j , k . Remark: For MSEP considerations, an estimate of the uncertainty of the ν k is required. We assume that a prior variance estimate � ˆ Var (ˆ ν i ) is given exogenously. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 5 / 18

  9. Model Assumptions (ODP) The incremental claims X i , j are independent overdispersed Poisson distributed (ODP) with E [ X i , j ] = m i , j = µ i γ j , Var ( X i , j ) = φ m i , j , and � I j =0 γ j = 1. ν k are independent unbiased estimators of the expected ultimate ˆ claim µ k = E [ C k , I ] for all k ∈ { 0 , . . . , I } . X i , j and ˆ ν k are independent for all i , j , k . Remark: For MSEP considerations, an estimate of the uncertainty of the ν k is required. We assume that a prior variance estimate � ˆ Var (ˆ ν i ) is given exogenously. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 5 / 18

  10. Model Assumptions (ODP) The incremental claims X i , j are independent overdispersed Poisson distributed (ODP) with E [ X i , j ] = m i , j = µ i γ j , Var ( X i , j ) = φ m i , j , and � I j =0 γ j = 1. ν k are independent unbiased estimators of the expected ultimate ˆ claim µ k = E [ C k , I ] for all k ∈ { 0 , . . . , I } . X i , j and ˆ ν k are independent for all i , j , k . Remark: For MSEP considerations, an estimate of the uncertainty of the ν k is required. We assume that a prior variance estimate � ˆ Var (ˆ ν i ) is given exogenously. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 5 / 18

  11. Model Assumptions (ODP) The incremental claims X i , j are independent overdispersed Poisson distributed (ODP) with E [ X i , j ] = m i , j = µ i γ j , Var ( X i , j ) = φ m i , j , and � I j =0 γ j = 1. ν k are independent unbiased estimators of the expected ultimate ˆ claim µ k = E [ C k , I ] for all k ∈ { 0 , . . . , I } . X i , j and ˆ ν k are independent for all i , j , k . Remark: For MSEP considerations, an estimate of the uncertainty of the ν k is required. We assume that a prior variance estimate � ˆ Var (ˆ ν i ) is given exogenously. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 5 / 18

  12. The Bornhuetter-Ferguson Predictor In practice, the Bornhuetter-Ferguson (BF) predictor relies on the data D I for the loss development pattern and on external data or expert opinion for the expected ultimate claims E [ C i , I ]. The ultimate claim C i , I of accident year i is predicted by � � C BF = C i , I − i + ˆ ν i ˆ γ j , i , I j > I − i where ˆ γ j is an estimator for γ j . D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 6 / 18

  13. Maximum Likelihood Estimators for ODP „ 1 « X l D I ( µ i , γ j , φ ) = φ ( X i , j log( µ i γ j ) − µ i γ j ) + log c ( X i , j ; φ ) i + j ≤ I j < I „ 1 I − 1 I − 1 » ”– « “ “ ” X X + φ ( X 0 , I log 1 − 1 − + log c ( X 0 , I ; φ ) µ 0 γ n − µ 0 γ n , n =0 n =0 where c ( · , φ ) is the suitable normalizing function. The development pattern obtained, ˆ γ j , is identical to that produced by the chain ladder method, γ CL γ j = ˆ ˆ . j D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 7 / 18

  14. Maximum Likelihood Estimators for ODP „ 1 « X l D I ( µ i , γ j , φ ) = φ ( X i , j log( µ i γ j ) − µ i γ j ) + log c ( X i , j ; φ ) i + j ≤ I j < I „ 1 I − 1 I − 1 » ”– « “ “ ” X X + φ ( X 0 , I log 1 − 1 − + log c ( X 0 , I ; φ ) µ 0 γ n − µ 0 γ n , n =0 n =0 where c ( · , φ ) is the suitable normalizing function. The development pattern obtained, ˆ γ j , is identical to that produced by the chain ladder method, γ CL γ j = ˆ ˆ . j D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 7 / 18

  15. Dispersion Parameter Estimation To estimate the dispersion parameter φ , one could use MLE. We do not. Instead, due to ease of implementation we use Pearson residuals, given by � m i , j ) 2 φ = 1 ( X i , j − ˆ ˆ , d m i , j ˆ i + j ≤ I where d = ( I +1)( I +2) − 2 I − 1 is the degrees of freedom of the model 2 and ˆ m i , j = ˆ µ i ˆ γ j . D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 8 / 18

  16. Dispersion Parameter Estimation To estimate the dispersion parameter φ , one could use MLE. We do not. Instead, due to ease of implementation we use Pearson residuals, given by � m i , j ) 2 φ = 1 ( X i , j − ˆ ˆ , d m i , j ˆ i + j ≤ I where d = ( I +1)( I +2) − 2 I − 1 is the degrees of freedom of the model 2 and ˆ m i , j = ˆ µ i ˆ γ j . D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 8 / 18

  17. Mean Square Error of Prediction The (conditional) mean square error of prediction (MSEP) of the BF predictor � C BF for single accident years i ∈ { 1 , . . . , I } is given by i , I � 2 � �� � � msep C i , I |D I ( � � � C BF C BF i , I ) = E i , I − C i , I � D I � � � 2 � � � 2 � � ν i ) + µ 2 = Var ( X i , j ) + ˆ Var (ˆ γ j − ˆ γ j γ j . i j > I − i j > I − i j > I − i j > I − i We treat the three terms separately. D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 9 / 18

  18. Development Pattern Uncertainty We estimate � � � 2 γ j − γ j ) (ˆ j > I − i by the unconditional expectation �� � � �� �� � 2 �� � E (ˆ γ j − γ j ) = E ˆ γ j − γ j γ k − γ k ˆ . j > I − i j > I − i k > I − i Neglecting that MLEs have a possible bias term we make the following approximation: �� �� �� � � ˆ γ j − γ j ˆ γ k − γ k ≈ Cov (ˆ γ j , ˆ γ k ) . E j > I − i j > I − i k > I − i k > I − i D. H. Alai (ETH Zurich) Prediction Uncertainty in the BF Method August 1, 2009 10 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend