precision ew measurements from atlas
play

Precision EW Measurements from ATLAS Extracting sin 2 eff - PowerPoint PPT Presentation

Precision EW Measurements from ATLAS Extracting sin 2 eff Introduction Why measure sin 2 eff ? New triple-diff l Drell-Yan Cross Sections d 3 Systematic Uncertainties Extraction of sin 2 eff Measurement of the Drell-Yan triple


  1. Precision EW Measurements from ATLAS Extracting sin 2 θ eff Introduction Why measure sin 2 θ eff ? New triple-diff l Drell-Yan Cross Sections d 3 σ Systematic Uncertainties Extraction of sin 2 θ eff Measurement of the Drell-Yan triple differential cross section in pp collisions at √ s = 8 TeV HepData tables: http://dx.doi.org/10.1007/JHEP12(2017)059 https://www.hepdata.net/record/ins1630886 arXiv:1710.05167 Eram Rizvi UCL Seminar 26 th October 2018

  2. New Physics Searches ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary √ s = 8, 13 TeV Status: July 2018 � L dt = (3.2 – 79.8) fb − 1 Jets † E miss ℓ , γ � L dt[fb − 1 ] Model Limit Reference T ADD G KK + g / q 0 e , µ 1 − 4 j Yes 36.1 M D 7.7 TeV n = 2 1711.03301 Extra dimensions ADD non-resonant γγ 2 γ 36.7 M S 8.6 TeV n = 3 HLZ NLO 1707.04147 − − 2 j ADD QBH − − 37.0 M th 8.9 TeV n = 6 1703.09127 ADD BH high � p T ≥ 1 e , µ ≥ 2 j M th n = 6 , M D = 3 TeV, rot BH − 3.2 8.2 TeV 1606.02265 ADD BH multijet ≥ 3 j M th n = 6 , M D = 3 TeV, rot BH − − 3.6 9.55 TeV 1512.02586 RS1 G KK → γγ 2 γ G KK mass − − 36.7 4.1 TeV k / M Pl = 0.1 1707.04147 Bulk RS G KK → WW / ZZ 36.1 G KK mass multi-channel 2.3 TeV k / M Pl = 1.0 CERN-EP-2018-179 1 e , µ ≥ 1 b, ≥ 1 J/2j Yes g KK mass Bulk RS g KK → tt 36.1 3.8 TeV Γ / m = 15% 1804.10823 1 e , µ ≥ 2 b, ≥ 3 j Tier (1,1), B ( A (1,1) → tt ) = 1 2UED / RPP Yes 36.1 1.8 TeV KK mass 1803.09678 SSM Z ′ → ℓℓ Z ′ mass 2 e , µ − − 36.1 4.5 TeV 1707.02424 SSM Z ′ → ττ Z ′ mass 2 τ − − 36.1 2.42 TeV 1709.07242 Gauge bosons V Leptophobic Z ′ → bb Z ′ mass e − 2 b − 36.1 2.1 TeV 1805.09299 T Leptophobic Z ′ → tt Z ′ mass 1 e , µ ≥ 1 b, ≥ 1 J/2j Yes s Γ / m = 1% 36.1 3.0 TeV 1804.10823 3 t W ′ mass n SSM W ′ → ℓν 1 e , µ 1 79.8 − Yes 5.6 TeV ATLAS-CONF-2018-017 i , h W ′ mass 8 SSM W ′ → τν 1 τ Yes 36.1 3.7 TeV − 1801.06992 , M 7 HVT V ′ → WV → qqqq model B V ′ mass 0 e , µ 2 J 79.8 4.15 TeV g V = 3 − ATLAS-CONF-2018-016 = S HVT V ′ → WH / ZH model B V ′ mass s g V = 3 multi-channel 36.1 B 2.93 TeV 1712.06518 √ LRSM W ′ W ′ mass R → tb multi-channel 36.1 o 3.25 TeV CERN-EP-2018-142 t a n d η − CI qqqq 2 j , − − 37.0 Λ 21.8 TeV 1703.09127 s LL e CI l 2 e , µ η − CI ℓℓ qq 36.1 t a − − Λ 40.0 TeV 1707.02424 c LL n e CI tttt ≥ 1 e , µ ≥ 1 b, ≥ 1 j 36.1 | C 4 t | = 4 π Yes Λ 2.57 TeV CERN-EP-2018-174 g l l i o s Axial-vector mediator (Dirac DM) 0 e , µ 1 − 4 j c m med g q =0.25, g χ =1.0, m ( χ ) = 1 GeV Yes 36.1 1.55 TeV 1711.03301 o DM a n Colored scalar mediator (Dirac DM) 0 e , µ 1 − 4 j m med Yes 36.1 1.67 TeV g =1.0, m ( χ ) = 1 GeV 1711.03301 t a , VV χχ EFT (Dirac DM) 0 e , µ 1 J, ≤ 1 j s M ∗ m ( χ ) < 150 GeV Yes 3.2 700 GeV 1608.02372 d n b -1 u Scalar LQ 1 st gen ≥ 2 j 2 e 3.2 β = 1 − LQ mass 1.1 TeV 1605.06035 g LQ Scalar LQ 2 nd gen f ≥ 2 j 2 µ g 3.2 1.05 TeV β = 1 − LQ mass 1605.06035 0 n Scalar LQ 3 rd gen 1 e , µ ≥ 1 b, ≥ 3 j 6 Yes 20.3 640 GeV β = 0 LQ mass 1508.04735 i k r o e Heavy quarks VLQ TT → Ht / Zt / Wb + X m multi-channel 36.1 T mass 1.37 TeV SU(2) doublet ATLAS-CONF-2018-032 v O s VLQ BB → Wt / Zb + X multi-channel 36.1 B mass 1.34 TeV SU(2) doublet ATLAS-CONF-2018-032 o VLQ T 5 / 3 T 5 / 3 | T 5 / 3 → Wt + X 2(SS)/ ≥ 3 e , µ ≥ 1 b, ≥ 1 j T 5 / 3 mass B ( T 5 / 3 → Wt ) = 1, c ( T 5 / 3 Wt ) = 1 Yes 36.1 1.64 TeV CERN-EP-2018-171 N √ 1 e , µ ≥ 1 b, ≥ 1 j VLQ Y → Wb + X Yes 3.2 Y mass 1.44 TeV B ( Y → Wb ) = 1, c ( YWb ) = 1 / 2 ATLAS-CONF-2016-072 ≥ 1 b, ≥ 1 j VLQ B → Hb + X 0 e , µ , 2 γ 79.8 κ B = 0.5 Yes B mass 1.21 TeV ATLAS-CONF-2018-024 1 e , µ ≥ 4 j VLQ QQ → WqWq Yes 20.3 Q mass 690 GeV 1509.04261 Excited fermions Excited quark q ∗ → qg q ∗ mass only u ∗ and d ∗ , Λ = m ( q ∗ ) 2 j 37.0 6.0 TeV 1703.09127 − − Excited quark q ∗ → q γ q ∗ mass only u ∗ and d ∗ , Λ = m ( q ∗ ) 1 γ 1 j − 36.7 5.3 TeV 1709.10440 Excited quark b ∗ → bg b ∗ mass 1 b, 1 j − − 36.1 2.6 TeV 1805.09299 ℓ ∗ mass Excited lepton ℓ ∗ 3 e , µ − − 20.3 3.0 TeV Λ = 3.0 TeV 1411.2921 ν ∗ mass Excited lepton ν ∗ 3 e , µ , τ − − 20.3 1.6 TeV Λ = 1.6 TeV 1411.2921 Type III Seesaw 1 e , µ ≥ 2 j N 0 mass Yes 79.8 560 GeV ATLAS-CONF-2018-020 LRSM Majorana ν 2 e , µ 2 j N 0 mass 20.3 2.0 TeV m ( W R ) = 2.4 TeV, no mixing 1506.06020 − Higgs triplet H ±± → ℓℓ H ±± mass 2,3,4 e , µ (SS) 36.1 870 GeV DY production 1710.09748 − − Other Higgs triplet H ±± → ℓτ H ±± mass DY production, B ( H ±± 3 e , µ , τ → ℓτ ) = 1 − − 20.3 400 GeV 1411.2921 L Monotop (non-res prod) 1 e , µ a non − res = 0.2 1 b Yes 20.3 spin-1 invisible particle mass 657 GeV 1410.5404 Multi-charged particles multi-charged particle mass DY production, | q | = 5 e − − − 20.3 785 GeV 1504.04188 Magnetic monopoles 7.0 monopole mass DY production, | g | = 1 g D , spin 1 / 2 − − − 1.34 TeV 1509.08059 √ s = 8 TeV √ s = 13 TeV 10 − 1 1 10 Mass scale [TeV] *Only a selection of the available mass limits on new states or phenomena is shown. † Small-radius (large-radius) jets are denoted by the letter j (J). 2 Eram Rizvi UCL Seminar − 26 th October 2018

  3. The Standard Model Standard Model Total Production Cross Section Measurements Status: July 2018 σ [pb] 500 µ b − 1 10 11 ATLAS Preliminary 80 µ b − 1 Theory Run 1,2 √ s = 7,8,13 TeV LHC pp √ s = 7 TeV 10 6 Probing EW and QCD sector of Standard Model over 12 orders of magnitude! Data 4.5 − 4.6 fb − 1 LHC pp √ s = 8 TeV 10 5 Data 20.2 − 20.3 fb − 1 10 4 LHC pp √ s = 13 TeV These measurements Data 3.2 − 79.8 fb − 1 10 3 10 2 total 10 1 2.0 fb − 1 VBF VH 1 t ¯ tH 10 − 1 pp t¯ t¯ tW t¯ tZ tZj t t W Z WW H Wt WZ ZZ t t -chan s -chan 3 Eram Rizvi UCL Seminar − 26 th October 2018

  4. Electroweak Precision Observables - sin 2 θ eff GFitter 2018 With known m h EW sector of SM is over-constrained Global EW fit of all precision data • m Z = 91.1876 GeV • G µ = 1.16637 x 10 -5 GeV -2 • α QED (0) = 1/137.035 M 0.0 H • … . several others … . M -1.5 W Γ 0.1 W M 0.3 Z Γ -0.2 sin 2 θ W is a fundamental SM parameter of the SM Z 0 σ Specifies the mixing between EM and weak fields -1.5 had 0 Relates the Z and W couplings g Z and g W (and their masses) R -1.0 lep 0,l A -0.9 FB A (LEP) 0.1 l sin 2 θ W = 1 − g 2 = 1 − m 2 A (SLD) W W At leading order -2.1 l g 2 m 2 lept 2 sin (Q ) Θ -0.7 Z Z eff FB lept 2 sin (Tevt.) 0.1 Θ eff 0,c A 0.8 FB Higher order EW corrections modify this 0,b 2.4 A e ff = (1 − m 2 FB sin 2 θ f to an effective mixing angle W ) · (1 + ∆ r ) A 0.0 c m 2 dependent on fermion flavour f A Z 0.6 b 0 R 0.0 c 0 R -0.7 b m EW scheme dependent 0.5 t (5) 2 corrections incorporated into ∆ α (M ) -0.2 had Z 2 Δ r → Δ r(m H , m top , … ) (M ) α 1.3 s Z − 3 − 2 − 1 0 1 2 3 (O O ) / − σ meas meas fit 4 Eram Rizvi UCL Seminar − 26 th October 2018

  5. Electroweak Precision Observables - sin 2 θ eff e ff = (1 − m 2 sin 2 θ f W ) · (1 + ∆ r ) m 2 Z In context of EFT extension to SM EW scheme dependent EW oblique parameters S, T, U, Y, W corrections incorporated into incorporate new BSM dim-6 operators Δ r → Δ r(m H , m top , new physics) in self-energy terms Measurement of one observable can predict the other m W ⇔ sin 2 θ W πα (0) 1 m 2 W = 2 G µ sin 2 θ W √ 1 − ∆ r m W and sin 2 θ eff allows self-consistency check of SM New physics hidden in the higher order corrections ?? Valuable test in absence of direct BSM signals GFitter 2014 Final Precision on sin 2 θ eff LEP: ± 29 x10 -5 2 SLD: ± 26 x10 -5 CDF+D0: ± 35 x10 -5 First LHC results on sin 2 θ eff sin 2 θ eff precision ± 50x10 -5 equivalent to ± 25 MeV in m W CMS(7TeV): ± 320 x10 -5 ATLAS(7TeV): ± 120 x10 -5 5 Eram Rizvi UCL Seminar − 26 th October 2018

  6. Electroweak Precision Observables - m W arXiv:1701.07240 New ATLAS measurement of m W reaches ±19 MeV precision ATLAS approaches precision of combined LEP + Tevatron measurement Theory prediction from EW fit has uncertainty ±8 MeV 6 Eram Rizvi UCL Seminar − 26 th October 2018

  7. Electroweak Precision Observables - sin 2 θ eff Physics Reports 427 (2006) 257–454 0,l A 0.23099 ± 0.00053 fb Previous generation of sin 2 θ W measurements LEP/SLD A l (P τ ) 0.23159 ± 0.00041 Several different observables and asymmetries used A l (SLD) 0.23098 ± 0.00026 A l = polarisation L/R asymmetry at SLD 0,b A FB = forward/backward asymmetry in Z → bb 0,b A 0.23221 ± 0.00029 fb 0,c A 0.23220 ± 0.00081 Long-standing 3.2 σ discrepancy between LEP and SLD fb had Q 0.2324 ± 0.0012 fb Average 0.23153 ± 0.00016 χ 2 /d.o.f.: 11.8 / 5 10 3 m H [ GeV ] 10 2 = 0.02758 ± 0.00035 ∆α ∆α m = 178.0 ± 4.3 GeV 0.23 0.232 0.234 lept sin 2 θ eff 7 Eram Rizvi UCL Seminar − 26 th October 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend