positive definite max qp
play

Positive definite max-QP Recall max-cut max vE(1-v) s.t. 0 v - PowerPoint PPT Presentation

Positive definite max-QP Recall max-cut max vE(1-v) s.t. 0 v 1 max v(E + kI)(1-v) s.t. 0 v 1 LASSO revisited LASSO objective terms Support vector machines Maximizing margin margin = y i (x i . w - b)


  1. Positive definite max-QP • Recall max-cut • max v’E(1-v) s.t. 0 ≤ v ≤ 1 • max v’(E + kI)(1-v) s.t. 0 ≤ v ≤ 1

  2. LASSO revisited

  3. LASSO objective terms

  4. Support vector machines

  5. Maximizing margin • margin = y i (x i . w - b) • max s.t.

  6. Administrative • Submission directories should be present now. /afs/andrew/course/10/725/Submit/ your-ID Check yours! – e.g., submit a small file “test.txt” • We don’t want to hear about problems late on night before due date… • Registration deadline: yesterday – everyone’s in! – to audit: register + get signed form + turn in to HUB – I still have one signed form

  7. Duality

  8. What if we’re lazy • A “hard” LP: min x + y s.t. x + y ≥ 2 x, y ≥ 0

  9. OK, we got lucky • What if it were: min x + 3y s.t. x + y ≥ 2 x, y ≥ 0

  10. How general is this? • What if it were: min px + qy s.t. x + y ≥ 2 x, y ≥ 0

  11. Let’s do it again • Note ≤ constraint min x – 2y s.t. x + y ≥ 2 x, y ≥ 0 x, y ≤ 3

  12. And again • Note = constraint min x – 2y s.t. x + y ≥ 2 x, y ≥ 0 3x + y = 2

  13. Summary of LP duality • Use multipliers to write combined constraints ≥ ≤ = • Constrain multipliers to give us a bound on objective • Optimize to get tightest bound

  14. min x + y s.t. x + y ≥ 2 The Lagrangian x, y ≥ 0 • L(a,b,c,x,y) = [x + y] – [a (x + y – 2) + bx + cy] • min x,y max a,b,c ≥ 0 L(a,b,c,x,y)

  15. min x + y s.t. x + y ≥ 2 Lagrangian cont’d x, y ≥ 0 • L(a,b,c,x,y) = [x + y] – [a (x + y – 2) + bx + cy] • min x,y max a,b,c ≥ 0 L(a,b,c,x,y)

  16. Saddle-point picture • min y s.t. y ≥ 2

  17. Example: max flow • Given a directed graph – edges (i,j) ∈ E – flows f ij , capacities c ij – source s, terminal t (c ts = ∞ ) • max f ts s.t. – positive flow – capacity – flow conservation

  18. Dual of max flow

  19. Interpreting dual

  20. min cut: image segmentation

  21. What about QP duality? • min x 2 + y 2 s.t. x + 2y ≥ 2 x, y ≥ 0 • How can we lower-bound OPT?

  22. Works at other points too • min x 2 + y 2 s.t. x + 2y ≥ 2 x, y ≥ 0 • Try Taylor @ (x, y) = (v, w)

  23. Example: SVMs

  24. SVM duality • Recall: min s.t. • Taylor bound objective: • Generic constraint: • To get bound, need:

  25. SVM dual • max α ,v Σ i α i – ||v|| 2 /2 s.t. Σ i α i y i = 0 Σ i α i y i x ij = v j for all j α i ≥ 0 for all i

  26. Perpendicular bisector

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend