polynomial equivalence problem for sums of affine powers
play

Polynomial equivalence problem for sums of affine powers ISSAC 2018 - PowerPoint PPT Presentation

Polynomial equivalence problem for sums of affine powers ISSAC 2018 Ignacio Garcia-Marco 1 , Pascal Koiran 2 , Timoth ee Pecatte 2 1 Universidad de la Laguna, 2 LIP, Ecole Normale Sup erieure de Lyon 1 / 21 Models of interest 1 / 21


  1. Polynomial equivalence problem for sums of affine powers ISSAC 2018 Ignacio Garcia-Marco 1 , Pascal Koiran 2 , Timoth´ ee Pecatte 2 1 Universidad de la Laguna, 2 LIP, ´ Ecole Normale Sup´ erieure de Lyon 1 / 21

  2. Models of interest 1 / 21

  3. Classical models: the Waring model Model (Waring decomposition) k � α i ( x − a i ) d with α i , a i ∈ F , e i ∈ N , and d = deg( f ) i =1 2 / 21

  4. Classical models: the Waring model Model (Waring decomposition) k � α i ( x − a i ) d with α i , a i ∈ F , e i ∈ N , and d = deg( f ) i =1 Reconstruction problem: Given f , one wants an optimal expression of f in this model (with the minimum value of k possible). 2 / 21

  5. Classical models: the Waring model Model (Waring decomposition) k � α i ( x − a i ) d with α i , a i ∈ F , e i ∈ N , and d = deg( f ) i =1 Reconstruction problem: Given f , one wants an optimal expression of f in this model (with the minimum value of k possible). Solution: Sylvester (1851) 2 / 21

  6. Classical models: the Waring model Model (Waring decomposition) k � α i ( x − a i ) d with α i , a i ∈ F , e i ∈ N , and d = deg( f ) i =1 Reconstruction problem: Given f , one wants an optimal expression of f in this model (with the minimum value of k possible). Solution: Sylvester (1851) Lots of partial solutions for the multivariate version: Auslander, Hirschowitz, Boij, Carlini, Geramita, Oeding, Landsberg, Sturmfels, . . . 2 / 21

  7. Classical models: the Sparsest Shift model Model (Sparsest shift) k � α i ( x − a ) e i with α i , a ∈ F , e i ∈ N . i =1 3 / 21

  8. Classical models: the Sparsest Shift model Model (Sparsest shift) k � α i ( x − a ) e i with α i , a ∈ F , e i ∈ N . i =1 Reconstruction problem: Given f , one wants an optimal expression of f in this model. 3 / 21

  9. Classical models: the Sparsest Shift model Model (Sparsest shift) k � α i ( x − a ) e i with α i , a ∈ F , e i ∈ N . i =1 Reconstruction problem: Given f , one wants an optimal expression of f in this model. Solution: Borodin-Tiwari (1991), Giesbrecht-Roche (2010) 3 / 21

  10. Classical models: the Sparsest Shift model Model (Sparsest shift) k � α i ( x − a ) e i with α i , a ∈ F , e i ∈ N . i =1 Reconstruction problem: Given f , one wants an optimal expression of f in this model. Solution: Borodin-Tiwari (1991), Giesbrecht-Roche (2010) For the multivariate version: Grigoriev-Karpinski (1993), Giesbrecht-Kaltofen-Lee (2003). 3 / 21

  11. Sums of affine powers Model (Univariate Σ ∧ Σ) k � α i ( x − a i ) e i with α i , a i ∈ F i =1 4 / 21

  12. Sums of affine powers Model (Univariate Σ ∧ Σ) k � α i ( x − a i ) e i with α i , a i ∈ F i =1 We now consider f an multivariate polynomial with coefficients in F , this is, f ∈ F [ X ]. 4 / 21

  13. Sums of affine powers Model (Univariate Σ ∧ Σ) k � α i ( x − a i ) e i with α i , a i ∈ F i =1 We now consider f an multivariate polynomial with coefficients in F , this is, f ∈ F [ X ]. Model (Multivariate Σ ∧ Σ) k � α i ( a i , 1 x 1 + . . . + a i , n x n + a i , 0 ) e i i =1 4 / 21

  14. Sums of affine powers Model (Univariate Σ ∧ Σ) k � α i ( x − a i ) e i with α i , a i ∈ F i =1 We now consider f an multivariate polynomial with coefficients in F , this is, f ∈ F [ X ]. Model (Multivariate Σ ∧ Σ) k � ℓ e i with ℓ i ∈ F [ X ] , deg( ℓ i ) ≤ 1 i i =1 4 / 21

  15. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. 5 / 21

  16. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i 5 / 21

  17. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i • Change of basis 5 / 21

  18. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i • Change of basis • Solving linear systems 5 / 21

  19. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i • Change of basis • Solving linear systems • Factorization 5 / 21

  20. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i • Change of basis • PIT • Solving linear systems • Factorization 5 / 21

  21. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i • Change of basis • PIT • Solving linear systems • Derivatives • Factorization 5 / 21

  22. Goal: reconstruction algorithms Problem Given a polynomial f ∈ F [ X ] , compute the exact value s = AffPow F ( f ) and a decomposition with s terms. AffPow( f ) = s Algorithm Blackbox for f i =1 ℓ e i � s f = i • Change of basis • PIT • Solving linear systems • Derivatives • Factorization • Homogeneous components 5 / 21

  23. Essential variables f ( x 1 , x 2 , x 3 ) = x 3 1 + x 2 1 x 2 − 2 x 2 1 x 3 − 2 x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 6 / 21

  24. Essential variables f ( x 1 , x 2 , x 3 ) = x 3 1 + x 2 1 x 2 − 2 x 2 1 x 3 − 2 x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 = ( x 2 + x 3 )( x 1 − x 3 ) 2 + ( x 1 − x 3 ) 3 6 / 21

  25. Essential variables f ( x 1 , x 2 , x 3 ) = x 3 1 + x 2 1 x 2 − 2 x 2 1 x 3 − 2 x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 = ( x 2 + x 3 )( x 1 − x 3 ) 2 + ( x 1 − x 3 ) 3 g ( y 1 , y 2 ) = f ( z 1 , y 1 + y 2 − z 1 , z 1 − y 2 ) = y 1 y 2 2 + y 3 2 6 / 21

  26. Essential variables f ( x 1 , x 2 , x 3 ) = x 3 1 + x 2 1 x 2 − 2 x 2 1 x 3 − 2 x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 = ( x 2 + x 3 )( x 1 − x 3 ) 2 + ( x 1 − x 3 ) 3 g ( y 1 , y 2 ) = f ( z 1 , y 1 + y 2 − z 1 , z 1 − y 2 ) = y 1 y 2 2 + y 3 2 Proposition (Carlini) For a polynomial f ∈ F [ X ] , we have � ∂ f � EssVar ( f ) = dim F | 1 ≤ i ≤ n ∂ x i 6 / 21

  27. Essential variables f ( x 1 , x 2 , x 3 ) = x 3 1 + x 2 1 x 2 − 2 x 2 1 x 3 − 2 x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 = ( x 2 + x 3 )( x 1 − x 3 ) 2 + ( x 1 − x 3 ) 3 g ( y 1 , y 2 ) = f ( z 1 , y 1 + y 2 − z 1 , z 1 − y 2 ) = y 1 y 2 2 + y 3 2 Proposition (Carlini) For a polynomial f ∈ F [ X ] , we have � ∂ f � EssVar ( f ) = dim F | 1 ≤ i ≤ n ∂ x i Eliminating redundant variables can be done with a randomized polynomial time algorithm [Kayal] ⇒ we will assume that f is regular . 6 / 21

  28. Essential variables f ( x 1 , x 2 , x 3 ) = x 3 1 + x 2 1 x 2 − 2 x 2 1 x 3 − 2 x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 = ( x 2 + x 3 )( x 1 − x 3 ) 2 + ( x 1 − x 3 ) 3 g ( y 1 , y 2 ) = f ( z 1 , y 1 + y 2 − z 1 , z 1 − y 2 ) = y 1 y 2 2 + y 3 2 Proposition (Carlini) For a polynomial f ∈ F [ X ] , we have � ∂ f � EssVar ( f ) = dim F | 1 ≤ i ≤ n ∂ x i Eliminating redundant variables can be done with a randomized polynomial time algorithm [Kayal] ⇒ we will assume that f is regular . EssVar( f ) ≤ AffPow( f ) 6 / 21

  29. From reconstruction to polynomial equivalence Take f such that EssVar( f ) = AffPow( f ), i.e. f = � n i =1 ℓ e i i . 7 / 21

  30. From reconstruction to polynomial equivalence Take f such that EssVar( f ) = AffPow( f ), i.e. f = � n i =1 ℓ e i i . Set     [ ℓ 1 ] ℓ 1 (0) . . . . A = b =  ,     . .    [ ℓ n ] ℓ n (0) so that 7 / 21

  31. From reconstruction to polynomial equivalence Take f such that EssVar( f ) = AffPow( f ), i.e. f = � n i =1 ℓ e i i . Set     [ ℓ 1 ] ℓ 1 (0) . . . . A = b =  ,     . .    [ ℓ n ] ℓ n (0) so that n � x e i f ( X ) = g ( A · X + b ) with g = i i =1 7 / 21

  32. From reconstruction to polynomial equivalence Take f such that EssVar( f ) = AffPow( f ), i.e. f = � n i =1 ℓ e i i . Set     [ ℓ 1 ] ℓ 1 (0) . . . . A = b =  ,     . .    [ ℓ n ] ℓ n (0) so that n � x e i f ( X ) = g ( A · X + b ) with g = i i =1 Definition (Polynomial equivalence) f ∼ g if f ( X ) = g ( A · X ) with A ∈ GL n ( F ) f ≡ g if f ( X ) = g ( A · X + b ) with A ∈ GL n ( F ) , b ∈ F n 7 / 21

  33. From reconstruction to polynomial equivalence Take f such that EssVar( f ) = AffPow( f ), i.e. f = � n i =1 ℓ e i i . Set     [ ℓ 1 ] ℓ 1 (0) . . . . A = b =  ,     . .    [ ℓ n ] ℓ n (0) so that n � x e i f ( X ) = g ( A · X + b ) with g = i i =1 Definition (Polynomial equivalence) f ∼ g if f ( X ) = g ( A · X ) with A ∈ GL n ( F ) f ≡ g if f ( X ) = g ( A · X + b ) with A ∈ GL n ( F ) , b ∈ F n n � x e i for some ( e i ) ∈ N n AffPow( f ) = EssVar( f ) ⇔ f ≡ g with g = i i =1 7 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend