playing anonymous games using simple strategies

Playing Anonymous Games Using Simple Strategies Yu Cheng Ilias - PowerPoint PPT Presentation

Playing Anonymous Games Using Simple Strategies Yu Cheng Ilias Diakonikolas Alistair Stewart University of Southern California Anonymous Games players, = (1) strategies Payoff of each player depends on Her identity


  1. Playing Anonymous Games Using Simple Strategies Yu Cheng Ilias Diakonikolas Alistair Stewart University of Southern California

  2. Anonymous Games β€’ π‘œ players, 𝑙 = 𝑃(1) strategies β€’ Payoff of each player depends on β€’ Her identity and strategy β€’ The number of other players who play each of the strategy β€’ NOT the identity of other players Jan 16, 2017 Yu Cheng (USC)

  3. Anonymous Games Jan 16, 2017 Yu Cheng (USC)

  4. Nash Equilibrium β€’ Players have no incentive to deviate β€’ πœ— -Approximate Nash Equilibrium ( πœ— -ANE): Players can gain at most πœ— by deviation Jan 16, 2017 Yu Cheng (USC)

  5. Previous Work πœ— -ANE of π‘œ -player 𝑙 -strategy anonymous games: π‘œ )/+ , -. β€’ [DP’08]: First PTAS β€’ [CDO’14]: PPAD-Complete when πœ— = 2 01 2 and 𝑙 = 5 Jan 16, 2017 Yu Cheng (USC)

  6. How small can πœ— be so that an πœ— -ANE can be computed in polynomial time?

  7. πœ— Running time # of strategies π‘œ )/+ , -. 𝑙 > 2 [DP’08a] πœ— = 2 01 2 𝑙 = 5 [CDO’14] PPAD Complete poly π‘œ β‹… 1/πœ— :(;<= > (?/+)) 𝑙 = 2 [DP’08b] πœ— = π‘œ 0?/@ poly π‘œ 𝑙 = 2 [GT’15] poly π‘œ β‹… 1/πœ— :(;<= (?/+)) 𝑙 = 2 [DKS’16a] [DKS’16b] [DDKT’16] π‘œ B<;C()) β‹… 1/πœ— ) ;<= ?/+ ,(-) 𝑙 > 2 Jan 16, 2017 Yu Cheng (USC)

  8. Our Results Fix any 𝑙 > 2, πœ€ > 0 ? β€’ First poly-time algorithm when πœ— = 1 GHI ? β€’ A poly-time algorithm for πœ— = 1 GJI ⟹ FPTAS πœ— = 1/2 1L πœ— = 1/π‘œ ?/@ πœ— = 1 πœ— = 0.01 πœ— = 1/2 1L πœ— = 1/π‘œ L πœ— = 1 πœ— = 1/π‘œ Jan 16, 2017 Yu Cheng (USC)

  9. Our Results Fix any 𝑙 > 2, πœ€ > 0 ? β€’ First poly-time algorithm when πœ— = 1 GHI ? β€’ A poly-time algorithm for πœ— = 1 GJI ⟹ FPTAS ? β€’ A faster algorithm that computes an πœ— β‰ˆ 1 G/. equilibrium Jan 16, 2017 Yu Cheng (USC)

  10. οΏ½ Anonymous Games β€’ Player 𝑗 ’s payoff when she plays strategy 𝑏 S = 0.3 S = 0.7 𝑣 R 𝑣 R S : Ξ  10? ) β€’ 𝑣 R β†’ 0, 1 ) = {(𝑦 ? , … , 𝑦 ) ) | βˆ‘ 𝑦 S β€’ Ξ  10? = π‘œ βˆ’ 1} S Jan 16, 2017 Yu Cheng (USC)

  11. οΏ½οΏ½ Poisson Multinomial Distributions β€’ 𝑙 -Categorical Random Variable ( 𝑙 -CRV) π‘Œ S is a vector random variable ∈ {𝑙 -dimensional basis vectors } β€’ An (π‘œ, 𝑙) -Poisson Multinomial Distribution (PMD) is the sum of π‘œ independent 𝑙 -CRVs π‘Œ = βˆ‘ π‘Œ S Jan 16, 2017 Yu Cheng (USC)

  12. Player 1 plays strategy 1 Player 2 plays strategy 1 or 2 Player 3 plays strategy 2 or 3 Jan 16, 2017 Yu Cheng (USC)

  13. Poisson Multinomial Distributions Jan 16, 2017 Yu Cheng (USC)

  14. Poisson Multinomial Distributions (PMDs) = Sum of independent random (basis) vectors = Mixed strategy profiles of anonymous games Jan 16, 2017 Yu Cheng (USC)

  15. Better understanding of PMDs Faster algorithms for πœ— -ANE of anonymous games Jan 16, 2017 Yu Cheng (USC)

  16. Our Results Fix any 𝑙 > 2, πœ€ > 0 ? β€’ First poly-time algorithm when πœ— = 1 GHI ? β€’ A poly-time algorithm for πœ— = 1 GJI ⟹ FPTAS ? β€’ A faster algorithm that computes an πœ— β‰ˆ 1 G/. equilibrium Jan 16, 2017 Yu Cheng (USC)

  17. Pure Nash Equilibrium Player 1 Player 2 Strategy 1 Strategy 2 … Strategy 3 Player n Jan 16, 2017 Yu Cheng (USC)

  18. Lipschitz Games β€’ An anonymous game is πœ‡ -Lipschitz if S βˆ’ 𝑣 R S ( ) ≀ πœ‡ βˆ’ ? 𝑣 R β€’ [DP’15, AS’13] Every πœ‡ -Lipschitz 𝑙 -strategy anonymous game admits a 2π‘™πœ‡ -approximate pure equilibrium Jan 16, 2017 Yu Cheng (USC)

  19. Lipschitz Games β€’ 2π‘™πœ‡ -approximate pure equilibrium Bad case: πœ‡ = 1 S = 0 S = 1 𝑣 R 𝑣 R Jan 16, 2017 Yu Cheng (USC)

  20. S = 0 𝑣 R S = 1 𝑣 R Nov 11, 2016 Yu Cheng (USC)

  21. S = 0 𝑣 R S = 1 𝑣 R 𝑒 fg = 1 𝑒 fg β‰ͺ 1 Jan 16, 2017 Yu Cheng (USC)

  22. οΏ½ Smoothed Game [GT’15] β€’ Given a game 𝐻 , construct a new game 𝐻 j 𝑣’ = 𝔽 𝑣( ) ? n β€’ G j is 𝑃 -Lipschitz 1j Jan 16, 2017 Yu Cheng (USC)

  23. οΏ½ οΏ½ p (1/ π‘œ ?/q )-ANE in Polynomial Time O β€’ A 2π‘™πœ‡ -ANE of 𝐻 j is a 2π‘™πœ‡ + πœ€ -equilibrium of 𝐻 j j β€’ Gain at most 2π‘™πœ‡ by switching to 1 βˆ’ πœ€, )0? , … , )0? β€’ Gain at most 2π‘™πœ‡ + πœ€ by switching to 1, 0 … 0 ? ? ? n n n β€’ πœ‡ = 𝑃 ⟹ πœ— = 𝑃 + πœ€ = 𝑃 1 G/. 1j 1j Jan 16, 2017 Yu Cheng (USC)

  24. οΏ½ n( 1 𝑒 fg , ≀ 𝑃 ) βˆ’ ? π‘œπœ€ β‰ˆ π’ͺ(𝜈 ? , Ξ£ ? ) π’ͺ(𝜈 w , Ξ£ w ) β€’ Size-free multivariate Central Limit Theorem [DKS’16]: an (π‘œ, 𝑙) -PMD is poly(𝑙/𝜏) close to discrete Gaussians β€’ Two Gaussians with similar mean and variance are close Jan 16, 2017 Yu Cheng (USC)

  25. Our Results Fix any 𝑙 > 2, πœ€ > 0 ? β€’ First poly-time algorithm when πœ— = 1 GHI ? β€’ A poly-time algorithm for πœ— = 1 GJI ⟹ FPTAS ? β€’ A faster algorithm that computes an πœ— β‰ˆ 1 G/. equilibrium Jan 16, 2017 Yu Cheng (USC)

  26. O(1/π‘œ x.yy ) -ANE Jan 16, 2017 Yu Cheng (USC)

  27. Player 1 Player 2 … Player n Jan 16, 2017 Yu Cheng (USC)

  28. Quasi-PTAS when πœ— = O(1/π‘œ L ) β€’ Small d TV ⟹ Similar payoffs β€’ Limitation: β€’ Cover-size lower bound [DKS’16]: even when 𝑙 = 2 Any proper πœ— -cover 𝑇 must have 𝑇 β‰₯ π‘œ (1/πœ—) |(;<= ?/+ ) Jan 16, 2017 Yu Cheng (USC)

  29. πœ— = 1/π‘œ x.yy πœ— = 1/π‘œ ?/q log (1/πœ—) moments 𝑃 1 moments Two moments Jan 16, 2017 Yu Cheng (USC)

  30. Moment Matching Lemma β€’ For two PMDs to be πœ— -close in d TV [DP’08, DKS’16] need first log (1/πœ—) moments to match β€’ We provide quantitative tradeoff between β€’ The number of moments we need to match β€’ The size of the variance Jan 16, 2017 Yu Cheng (USC)

  31. Moment Matching Lemma β€’ Multidimensional Fourier transform β€’ Exploit the sparsity of the Fourier transform β€’ Taylor approximations of the log Fourier transform β€’ Large variance ⟹ Truncate with fewer terms Jan 16, 2017 Yu Cheng (USC)

  32. O(1/π‘œ x.yy ) -ANE in Polynomial Time β€’ There always exists an equilibrium with variance πœ—π‘œ = π‘œ 0x.yy β‹… π‘œ = π‘œ x.x? β€’ Construct a poly-size πœ— -cover of large variance PMDs β€’ Polynomial-size: Match only degree 𝑃(1) moments Jan 16, 2017 Yu Cheng (USC)

  33. NE All (π‘œ, 𝑙) -PMDs 𝑇 β‰₯ π‘œ (1/πœ—) |(;<= ?/+ ) Jan 16, 2017 Yu Cheng (USC)

  34. ? 1 ~.β€’β€’ -ANE π‘Œ S = 1 βˆ’ π‘ž 𝒇 π’Œ + π‘žπ’‡ 0π’Œ PMDs with ? π‘Œ = βˆ‘π‘Œ S 1 G/. -ANE large variance 𝑇 = π‘œ ) , G/(GH~.β€’β€’ ) 𝑇 ≀ π‘œ )0? Jan 16, 2017 Yu Cheng (USC)

  35. Conclusion Computing πœ— -ANE of π‘œ -player anonymous games ? β€’ First poly-time algorithm when πœ— = 1 GHI β€’ New moment-matching lemma for PMDs ? β€’ A poly-time algorithm for πœ— = 1 GJI ⟹ FPTAS πœ— = 1/2 1L πœ— = 1/π‘œ L πœ— = 1 πœ— = 1/π‘œ Jan 16, 2017 Yu Cheng (USC)

  36. Open Problems FPTAS ? πœ— = 1/2 1L πœ— = 1/π‘œ L πœ— = 1 πœ— = 1/π‘œ Jan 16, 2017 Yu Cheng (USC)

Recommend


More recommend