pkc 2000
play

PKC 2000 18-20 january 2000 - Melbourne - Australia The Composite - PDF document

Public Key Cryptography PKC 2000 18-20 january 2000 - Melbourne - Australia The Composite Discrete Logarithm and Secure Authentication David Pointcheval Dpartement d Informatique ENS - CNRS David.Pointcheval@ens.fr


  1. Public Key Cryptography PKC ‘ 2000 18-20 january 2000 - Melbourne - Australia The Composite Discrete Logarithm and Secure Authentication David Pointcheval Département d ’Informatique ENS - CNRS David.Pointcheval@ens.fr http://www.di.ens.fr/~pointche Overview Overview ◆ Introduction ◆ Zero-Knowledge vs. Witness-Hiding ◆ The Discrete Logarithm Problem ◆ The GPS Identification Scheme ◆ The New Schemes ◆ Conclusion David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 2 ENS-CNRS

  2. Introduction Introduction Authentication Protocols: ◆ Identification (Zero-Knowledge Proofs) ◆ Signatures (Non-Interactive Proofs) ◆ Blind Signatures (Anonymity) David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 3 ENS-CNRS Previous Work Previous Work ◆ Fiat-Shamir (SQRT) , Ong-Schnorr (2 k -th roots) Guillou-Quisquater (RSA) , Schnorr (DL( p )) ● e -th roots and discrete logarithm ⇒ high computational load ◆ PKP, SD, CLE, PPP ● combinatorial problems ⇒ high communication load David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 4 ENS-CNRS

  3. Tools: ZK vs. WI Tools: ZK vs. WI ◆ Zero-Knowledge: (GMR 85) no information leaked about the secret ◆ Witness Hiding/Indistinguishability: (FS 90) no useful information leaked about the witness (secret key) David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 5 ENS-CNRS Zero Knowledge Zero Knowledge ◆ Advantages: ● no information leaked about the secret ⇒ perfect proof of knowledge (perfect authentication) ● non-interactive version ⇒ signature schemes (FS86 - PS96) ◆ Drawbacks: ● simulation ⇒ many iterations ● large computations/communications One of the best: Schnorr’s protocols David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 6 ENS-CNRS

  4. Witness Indistinguishability Witness Indistinguishability ◆ Advantages: ● no useful information leaked about the witness (secret) ⇒ the good property for authentication ● non-interactive version ⇒ signature schemes ● no simulation ⇒ only one iteration ● large computations/communications? Candidates: Okamoto schemes (Crypto ‘92) but less efficient than Schnorr’s David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 7 ENS-CNRS The Discrete Logarithm Problem The Discrete Logarithm Problem ◆ Setting: ● n and m large numbers such that m | ϕ ( n ) ● g in � n* of order m ◆ Secret: x in � m * ◆ Public: y=g x mod n ◆ Usually DL( p ): n=p and m=q | p -1 are both large prime integers David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 8 ENS-CNRS

  5. The Composite The Composite Discrete Logarithm Discrete Logarithm ◆ Composite Modulus: DL( n ) ● n hard to factor (e.g. n=pq ) ● DL( n ) harder than FACT( n ) and DL( p ) where p is the greatest prime factor of n ⇒ DL( n ) combines the two strongest problems ◆ Factorization: FACT( n ) g x = g y mod n ⇒ gcd( g x-y mod n, n ) ≠ 1 David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 9 ENS-CNRS α - α α α New Setting: α α α α -strong modulus strong modulus New Setting: α -strong prime p : p =2 r +1 ◆ α α α and for any m ≤ α , gcd( m , r )=1 ◆ α α α α -strong RSA modulus n : n=pq and both p and q are α -strong primes ◆ asymmetric basis g ∈ * : n 2 divides Ord p ( g ) but not Ord q ( g ) Theorem : a collision of x → g x mod n provides the factorization of n David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 10 ENS-CNRS

  6. The Schnorr ’s Identification ’s Identification The Schnorr ◆ Common Data: ● p and q large primes such that q | p -1 p* of order q ● g in q and v=g -s mod p ◆ Keys: s in mod ∈ = r  → x r x g p and q ←  ∈ e e k 2 mod = +  → y y r es q ? mod = y e x g v p David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 11 ENS-CNRS The Schnorr ’s Identification ’s Identification The Schnorr � ∈ = r mod  → x r x g p and q � ←  e ∈ e 2 k ? mod mod = +  → y = y e y r es q x g v p ◆ Efficiency: ● ( r, x=g r ) precomputed ● just r+es mod q to do on-line Could we do better? David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 12 ENS-CNRS

  7. The GPS Scheme The GPS Scheme Girault (EC ‘91) - Poupard-Stern (EC ‘98) ● n=pq large RSA modulus n* of large order (unknown) ● g in ● Keys: s in s k - security level S and v=g -s mod n s log S - size of the secret s log R - size of the random mod ∈ = r  → x r x g n and R ←  e ∈ e k 2 ? = +  → y = mod y e y r es x g v n David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 13 ENS-CNRS The GPS Scheme The GPS Scheme � mod ∈ = r  → x r x g n and R � ←  e ∈ e k 2 ? mod = +  → y = y e y r es x g v n ◆ Poupard-Stern: ● no adversary can succeed but with negligible probability over g and e . Otherwise she can break DL( n ) ● it is statistically zero-knowledge if S > Ord( g ) and S. 2 k / R negligible David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 14 ENS-CNRS

  8. The GPS Scheme The GPS Scheme ◆ Advantages: ● high security level: DL( n ) ● just r+es to do on-line no more modular reduction ◆ Drawbacks: ● zero-knowledge: several iterations ● S > Ord( g ) (for any g ): S > λ ( n ) and R >> S. 2 k ⇒ large parameters ( S and R ) and large secret key ( s ) David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 15 ENS-CNRS New Scheme (New Setting) New Scheme (New Setting) ● n=pq large 2 k -strong RSA modulus n* of large order ● g asymmetric basis in ● Keys: s in S and v=g -s mod n s k - security level s log S - size of the secret s log R - size of the random mod ∈ = r  → x r x g n and R ←  e ∈ e k 2 ? mod = +  → y = y e y r es x g v n David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 16 ENS-CNRS

  9. Properties Properties ∈ = mod  → x r r x g n and R ←  e ∈ e k 2 ? mod = +  → y = y e y r es x g v n ◆ Statement: this protocol is ● a proof of knowledge of s ( = - log g v ) relative to FACT( n ) ● statistically witness-indistinguishable if S > Ord( g ) and S. 2 k / R negligible David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 17 ENS-CNRS Efficiency Efficiency ◆ Drawbacks: ● lower security level: FACT( n ) but isn’t that enough…? ◆ Advantages: ● still just r+es to do on-line (no modular reduction) ● witness-indistinguishable: ⇒ ⇒ ⇒ ⇒ only one iteration with large k ● still S > Ord( g ) and R >> S. 2 k but Ord( g ) can be small (160 bits) ⇒ ⇒ ⇒ ⇒ small secret key and numbers David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 18 ENS-CNRS

  10. More Concrete Efficiency More Concrete Efficiency ◆ Practical sizes: ● security parameter: k =24 ● n a 1024 -bit 2 k -strong RSA modulus ● g of 160 -bit long order ● the secret key s is less than S =2 168 ● information leakage: 2 k’ = R /2 k . S = 2 64 ◆ Computations: ● Mult(24,168) and Add(256,192) ◆ Communications: ● only 360 bits ( 45 bytes) David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 19 ENS-CNRS Signature Signature ◆ Data: ● n=pq large 2 k -strong RSA modulus n* of large order ● g asymmetric basis in S and v=g -s mod n ● Keys: s in ◆ Signature: R and x = g r mod n ● r ∈ ● e = H( m,x ) ● y = r + es → signature of m = ( e , y ) ◆ Verification: e = H( m , g y v e mod n ) David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 20 ENS-CNRS

  11. Security Properties Security Properties Statement: if S > Ord( g ) , then ● an existential forgery ● under an adaptively chosen-message attack ● in the random oracle model is harder than factorization David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 21 ENS-CNRS Blind Signature Blind Signature ● n=pq large 2 k -strong RSA modulus n* of large order ● g asymmetric basis in S and v=g -s mod n ● Keys: s in β ∈ mod ∈ = r  → x r x g n M and β mod = h g n R { } γ ∈ − 2 ,..., 2 k k mod α = γ xhv n ←  e H( , ) ε = α m = ε − γ ∈ e e until 2 k = +  → y y r es ? mod = y e x g v n David Pointcheval The Composite Discrete Logarithm and Secure Authentication - PKC ‘2000 - 22 ENS-CNRS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend