parameterised electromagnetic scattering solutions for a
play

Parameterised Electromagnetic Scattering Solutions for a Range of - PowerPoint PPT Presentation

ETH Zrich Parameterised Electromagnetic Scattering Solutions for a Range of Incident Wave Directions P.D. Ledger, J. Peraire , K. Morgan MASCI Net Workshop Z urich May 2003 Aeronautics and Astronautics M.I.T. Civil and


  1. ETH Zürich Parameterised Electromagnetic Scattering Solutions for a Range of Incident Wave Directions P.D. Ledger, J. Peraire † , K. Morgan ∗ MASCI Net Workshop Z¨ urich May 2003 † Aeronautics and Astronautics M.I.T. ∗ Civil and Computational Engineering, Swansea Seminar for Applied Mathematics P .D. Ledger – p.1/23

  2. Outline of the Presentation The presentation will discuss Frequency domain variational statement; Arbitrary order H ( curl ) conforming discretisation; Application to 2D scattering problems; The need for a reduced–order model; Reduced order model formulation; Construction of certainty bounds; Numerical examples. Seminar for Applied Mathematics P .D. Ledger – p.2/23

  3. Frequency Domain Formulation Maxwells equations in the frequency domain reduce to curl 1 ǫ − i σ µ curl E − ω 2 � � E = 0 ω div (i ωǫ + σ ) E = 0 with typical tangential boundary conditions n × E = on Γ PEC 0 n × curl E = on Γ PMC 0 Seminar for Applied Mathematics P .D. Ledger – p.3/23

  4. ✂ ✆ ☎ ☎ ✆ ✆ ✂ ✁ ✆ ✁ ☎ ✝ ☎ ✄ ✁ ✂ � Frequency Domain Formulation Define H ( curl Ω) = { v ∈ ( L 2 (Ω)) 3 ; curl v ∈ ( L 2 (Ω)) 3 } H 0 ( curl Ω) = { v ∈ H ( curl Ω) , n ∧ v = 0 on Γ PEC } (Kikuchi): Find E ∈ H 0 ( curl ; Ω) , p ∈ H 1 0 (Ω) such that 1 ǫ − i σ − ω 2 µ curl , curl ( + ∇ p ) , = 0 ∀ ∈ 0 ( curl ; Ω) ω Ω Ω ǫ − i σ ω 2 ∀ q ∈ H 1 , ∇ q = 0 0 (Ω) ω Ω where H 1 0 = { p ∈ H 1 , p = 0 on Γ PEC } Seminar for Applied Mathematics P .D. Ledger – p.4/23

  5. ✂ ✆ ☎ ✁ ☎ ✆ � ✁ ✝ ✂ ✂ ✆ ✂ ✄ ✆ ✁ ✂ ☎ ☎ � ✁ ✂ ✄ Frequency Domain Formulation For certain simulations with, ω > 0 constant, the Lagrange multiplier p ≡ 0 . Therefore use simplified variational statement: Find E ∈ H 0 ( curl ; Ω) such that 1 ǫ − i σ − ω 2 µ curl , curl , = 0 ∀ ∈ 0 ( curl ; Ω) ω Ω Ω Discrete variational form: find E H ∈ X H ⊂ H 0 ( curl ; Ω) such that 1 ǫ − i σ − ω 2 µ curl H , curl = 0 ∀ H ∈ X H H , H H ω Ω Ω Seminar for Applied Mathematics P .D. Ledger – p.5/23

  6. Construction of Ainsworth & Coyle’s Edge Element Approximation The edge degrees of freedom are chosen to be the weighted moments of the tangential component of the field on edge γ � E → ω k E · d r k = 0 , 1 , · · · , p γ When the edge is parameterized by s ∈ ( − 1 , +1) then ω k is chosen to be the k th degree Legendre polynomial L k . The interior degrees of freedom have no compatibility condition on the interface. These are chosen to complete the polynomial space. Ainsworth, Coyle Hierarchic hp -edge element families for Maxwell’s equations in hybrid quadrilateral/triangular meshes. Comp. Meth. Appl. Mech. Eng. 2001;190:6709–6733. Seminar for Applied Mathematics P .D. Ledger – p.6/23

  7. ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � � ✁ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ✁ ✁ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ✁ .D. Ledger – p.7/23 Ω = Ω d + Ω f + Ω p Ledger et al. Arbitrary order edge elements for electromagnetic scattering simulations using hybrid P far Γ Γ = Γ PEC + Γ PMC + Γ FAR meshes and a PML, Int.J Num. Meth. Eng. 2002;55:339–358. 2D Electromagnetic Scattering Problems pmc Γ Γ or pec Ω d Seminar for Applied Mathematics f Ω p Ω E = E i + E s

  8. � ✝ � ✁ � ✁ ✝ � ✝ � ✁ ✁ ✁ � ✁ ✝ Formulation for Scattering Problems Find E s H in X D H A ( E s H , W H ) = ℓ ( W H ) ∀ W H ∈ X H where � 1 � ǫ − i σ − ω 2 �� � � A ( E s µ curl E s E s H , W H ) = H , curl W H H , W H ω Ω Ω n × curl E i , W H Γ P MC − A ( E i , W H ) � � ℓ ( W H ) = i on Γ P EC and X D H ⊂ D ( curl ) = { ∈ ( curl ) , × = − × × = 0 on Γ F AR } X H ⊂ 0 ( curl ) = { ∈ ( curl ) , × = 0 on Γ P EC and × = 0 on Γ F AR } Seminar for Applied Mathematics P .D. Ledger – p.8/23

  9. Output of Interest: RCS The far field pattern (RCS) is a measure of the scattered wave in the far field. Its distribution is given by H ; φ ) = L O ( E s σ ( E s H ; φ ) L O ( E s H ; φ ) where � L O ( E s ( n × E H · V − n ∧ curl E s H ; φ ) = H · Y ) dΓ Γ c and { V , Y } = {− [0 , 0 , 1] T , 1 i ω [sin φ, − cos φ, 0] T } exp { i ω ( x ′ cos φ + y ′ sin φ ) } Seminar for Applied Mathematics P .D. Ledger – p.9/23

  10. Why Use a Reduced Order Model? An engineer designing components may wish to make small modifications to a design and investigate the change in an “output”. Variables may include: Changes in geometry; Changes in frequency; Changes in material parameters; Changes in incidence direction. Each change requires a new computation, and for many changes this may be too expensive. Seminar for Applied Mathematics P .D. Ledger – p.10/23

  11. Reduced Order Model Description Off–line stage N θ Complete scattering solutions for incidences θ 1 , · · · , θ N θ N φ Complete adjoint solutions for viewing angles φ 1 , · · · , φ N φ On–line stage For a new incident angle θ the scattering width is rapidly predicted. Confidence bounds ensure reliability in output prediction. Seminar for Applied Mathematics P .D. Ledger – p.11/23

  12. Detailed Off-Line Description N θ and N φ are prescribed by the user. We currently use equally spaced angles in both cases. Find E s H ( θ i ) ∈ X D H , i = 1 , 2 , · · · , N θ A ( E s H ( θ i ) , W ) = ℓ ( W ; θ ) ∀ W ∈ X H Find Ψ H ( φ i ) ∈ X H , i = 1 , 2 , · · · , N φ A ( W , Ψ H ( φ i )) = −L O ( W ; φ ) ∀ W ∈ X H The solutions E s H ( θ i ) , i = 1 , 2 , · · · , N θ and Ψ H ( φ i ) , i = 1 , 2 , · · · , N φ are stored and reused in the on–line stage. Seminar for Applied Mathematics P .D. Ledger – p.12/23

  13. � ✁ Detailed On-Line Description Define W pr W du s N θ = span { H ( θ i ); i = 1 , · · · , N θ } N φ = span { Ψ H ( φ i ); i = 1 , · · · , N φ } N θ ( θ ) ∈ W pr For a new θ , find E s N θ ⊂ X D H ∀ W ∈ W pr A ( E s N θ , W ) = ℓ ( W ) N θ For each φ , find, Ψ N φ ( φ ) ∈ W du N φ ⊂ X H and s N ( θ, φ ) ∈ ∀ W ∈ W du A ( W , Ψ N φ ) = −L O ( W ) N φ s N = L O ( E s − A ( E s � � � � N θ ) − N θ , Ψ N φ ) σ N = s N s N ℓ Ψ N φ Seminar for Applied Mathematics P .D. Ledger – p.13/23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend