outline outline
play

Outline Outline Conditional Expected Value Conditional Expected - PowerPoint PPT Presentation

Outline Outline Conditional Expected Value Conditional Expected Value Chapman Chapman Kolmogorov Kolmogorov Equation Equation Sample Mean and Variance Sample Mean and Variance Estimating Mean and


  1. Outline Outline � Conditional Expected Value � Conditional Expected Value � Chapman � Chapman – – Kolmogorov Kolmogorov Equation Equation � � Sample Mean and Variance Sample Mean and Variance � Estimating Mean and Variance of � Estimating Mean and Variance of Random Data Random Data � Alternative Definition For � Alternative Definition For Probability Density Function Probability Density Function ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi Conditional Distribution of Y Y given event given event m m Conditional Distribution & Density given X = x Conditional Distribution of Conditional Distribution & Density given X = x { } ( ) ( ) ≤ ∩ P Y y m = = < ≤ + ∆ ( ) { } Noting , Noting , F y | X x lim F y | x X x x = ≤ = F Y y | m P Y y | m Y Y ( ) ∆ → x 0 P m ( ) ∂ ( ) F x , y y ∫ ∞ f x , y dy ( ) ( ) XY ≤ x}, + ∆ − ( ) For m = {X ≤ ∂ XY 1 1 ( ) F x x , y F x , y = = − x For m = {X x}, = = = F y | x x XY XY ( ) F y | x x lim ( ) ( ) ( ) Y Y + ∆ − f x ∆ → F x x F x dF x x 0 X X X X ( ) dx ∂ F x , y { } ( ) XY ( ) ≤ ∩ ≤ P X x Y y F x , y ∂ ( ) y 1 ( ) ( ) f x , y ( ) ( ) ≤ = = ∫ ∞ x = = = XY ≤ = = XY F y | X x f y | x f y | x x { } ( ) f y | X x f x 1 , y dx ( ) ( ) ( ) ≤ Y Y Y Y XY 1 f x P X x F x − F x F x X X X X ( ) ∫ ∞ x Similarly: ( ) ( ) Similarly: ∫ x f x 1 , y dx Similarly: Similarly: 2 f x , y f x , y dx ( ) ( ) = XY 1 = − XY ( ) XY F x | y f x | y ( ) ( ) < ≤ = x X F y | x X x 1 X ( ) ( ) f y f y Y 1 2 − Y F x F x Y X 2 X 1 ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi 1

  2. ( ) ( ) ( ) f x , y = f x , y | z Conditional expected value of a function of a Conditional expected value of a function of a f x | y XY ( ) Noting , Noting ( ) , = XY X f x | y , z f y ( ) X Y f y | z random variable g(Y) random variable g(Y) Y or or ( ) ( ) ( ) = f x , y | z f x | y , z f y | z +∞ { ( ) } ( ) ( ) ∫ XY X Y = E g Y | m g y f y | m dy Y − ∞ ( ) +∞ ( ) ( ) Integrating over y: ∫ Integrating over y: = f x | z f x | y , z f y | z dy { ( ) } +∞ ( ) ( ) ∫ X X Y = = = − ∞ E g Y | X x g y f y | x x dy Y − ∞ For Markov processes: For Markov processes: Conditional Expected Value given X = x Conditional Expected Value given X = x ( ) ( ) = ( ) +∞ ( ) ( ) ∫ f x | y , z f x | y = { ( ) } 1 + ∞ ( ) ( ) f x | z f x | y f y | z dy ∫ = = X X E g Y | X x g y f x , y dy ( ) X X Y − ∞ XY − ∞ f x X ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi ( ) ( ) + + + When X When X i i are jointly normal with are jointly normal with 2 2 X X ... X − + + − X X ... X X = 1 2 n X = 1 n V n ⎧ + + + ⎫ , density func , density functions tions n 2 2 2 x x ... x ( ) 1 = − f x ,... x exp ⎨ 1 2 n ⎬ 1 n ( ) n σ 2 2 ⎩ ⎭ π σ n 2 2 ( ) 1 n ∑ 1 ∑ 2 = If X i have the same mean & variance and form of and become = − If X i have the same mean & variance and form of and become X X V X X j j n n = j 1 j a sequence of uncorrelated random variables: a sequence of uncorrelated random variables: ⎧− ⎫ ( ) 2 − nv 1 n x n 3 ( ) 1 − ( ) ( ) = ⎨ ⎬ = f X x exp σ 2 f v v 2 e 2 U v σ { } η 2 ( ) − πσ 2 ⎩ 2 ⎭ V − n 1 2 n 1 ⎛ σ ⎞ ⎛ − ⎞ { } n 1 − ⎜ ⎟ Γ ⎜ ⎟ = σ n 1 σ 2 2 2 ⎜ ⎟ E X = n ⎝ ⎠ 2 ⎝ ⎠ 2 σ = n E V 2 n X n ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi 2

  3. ( ) ∑ = ∑ 2 − X n ∑ X X n ∑ χ = = 2 2 i χ = Y X 2 i X j = j i X 2 i = S j 1 = j 1 − n n 1 χ and χ 2 2 = Y: Density functions of χ and χ Density functions of = Y: η and σ as mean and variance: have η and σ If X i If X i have as mean and variance: ( ) χ 2 − y { } η n 2 2 − 1 − ( ) ( ) ( ) ( ) χ = χ − χ = n 1 σ 2 σ 2 f e 2 U f y y 2 e 2 U y = σ Χ 2 Χ 2 n ⎛ ⎞ n ⎛ ⎞ E X n n σ Γ σ Γ σ = n ⎜ ⎟ n ⎜ ⎟ 2 2 2 2 2 ⎝ ⎠ ⎝ ⎠ 2 2 X n ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi Theorem : If is the mean of a random sample : If is the mean of a random sample Size of a Sample for a Required Accuracy Theorem X Size of a Sample for a Required Accuracy of size n taken from a population having mean of size n taken from a population having mean Z ≤ = X − η Let error and the set lead to Let error and the set lead to z − η E η and variance σ 2 2 , then X η and variance σ = σ , then is a random Z is a random σ 2 2 z σ ≤ / n = E z . The sample size needed is ; if . The sample size needed is ; if n n 2 E variable whose distribution approaches a variable whose distribution approaches a this is the sample size, then with probability of this is the sample size, then with probability of → ∞ ∞ , i.e. standard normal distribution as n → standard normal distribution as n , i.e. 2 2 erf(z) erf(z) the error will not be more than the error will not be more than E E . . { } ⎧− ⎫ 2 = 2 ( ) 1 z σ = 2, E = 0.01, then n = ( ) : Let z = 3, σ ≤ = ⎨ ⎬ P Z z 2 erf z Example : Let z = 3, Example = 2, E = 0.01, then n = f Z z exp π ⎩ 2 ⎭ 2 4 data points are needed to estimate (9)(4)/10 - -4 (9)(4)/10 data points are needed to estimate { } { } { } mean with probability 0.997 and error < 0.01 mean with probability 0.997 and error < 0.01 ≤ 1 ≈ ≤ 2 = ≤ 3 = Note: Note: P Z 0 . 68 P Z 0 . 85 P Z 0 . 997 ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi 3

  4. Transformation of Random Variable Transformation of Random Variable Stratonovich Stratonovich definition of Probability definition of Probability Using the New Definition, Y = g(X g(X) ) Using the New Definition, Y = Density Function Density Function [ ] ( ) +∞ ( ) ( ) ∫ = δ − f y g x y f x dx Y X − ∞ ( ) ( ) { ( ) } = δ − { } δ − f X x E X x x x [ ( ) ] ∑ δ − = j { ( ) } +∞ ( ) ( ) ( ) ∫ g x y ( ) = δ − E g x E g x x X f x dx ′ g x X − ∞ j j + ∞ ( ) { ( ) } ∫ = δ − { ( ) } +∞ ( ) ( ) g x E x X dx ∫ δ − = δ − E X x x x f x dx − ∞ ( ) 1 X 1 1 − ∞ + ∞ ( ) ( ) ( ) f x ∫ ( ) + ∞ ( ) ( ) = ∫ ∑ ∑ g x f x dx = δ − = X j = f y x x f x dx f x ( ) X − ∞ Y j X ′ X − ∞ g x j j j ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi � Conditional Expected Value � Conditional Expected Value � Chapman � Chapman – – Kolmogorov Kolmogorov Equation Equation � Sample Mean and Variance � Sample Mean and Variance � Estimating Mean and Variance for � Estimating Mean and Variance for Random Data Random Data � Alternative Definition For � Alternative Definition For Probability Density Function Probability Density Function ME 529 - Stochastics G. Ahmadi ME 529 - Stochastics G. Ahmadi 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend