orthogonal similarity reduction of any symmetric matrix
play

Orthogonal similarity reduction of any symmetric matrix into a - PowerPoint PPT Presentation

Orthogonal similarity reduction of any symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal Ellen Van Camp, Raf Vandebril, Marc Van Barel and Nicola Mastronardi I. Algorithms Orthogonal similarity


  1. × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ × ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 ⊠ ⊠

  2. × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 ⊠ ⊠

  3. × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊗ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 ⊠ ⊠

  4. × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ × × × 0 ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ × ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

  5. × × × ⊠ ⊠ ⊠ ⊠ × × × ⊠ ⊠ ⊠ ⊠ × × × ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ × × ⊠ ⊠ ⊠ ⊠ ⊠

  6. × × × ⊠ ⊠ ⊠ ⊠ × × × ⊠ ⊠ ⊠ ⊠ × × × ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ × ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

  7. × × × ⊠ ⊠ ⊠ ⊠ × × × ⊠ ⊠ ⊠ ⊠ × × × ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

  8. 3. Reduction to diagonal-plus-semiseparable form with free choice of the diagonal Any symmetric matrix can be transformed into a diagonal-plus-semiseparable one where the diagonal can be chosen in advance, by means of orthogonal similarity transformations in order O ( 4 3 n 3 ) . Definition The sum of a symmetric semiseparable matrix and a diagonal matrix is called a diagonal-plus-semiseparable matrix. So choose a diagonal d = [ d 1 , d 2 , . . . , d n ] .

  9. A first algorithm × × × × × × × × × × × × × × × × × × × × × − → D + S × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

  10. Step 1 × × × × × × × 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 0 + × × × × × × × 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 d 1

  11. × × × × × × ⊗ 0 0 0 0 0 0 0 × × × × × × ⊗ 0 0 0 0 0 0 0 × × × × × × ⊗ 0 0 0 0 0 0 0 + × × × × × × ⊗ 0 0 0 0 0 0 0 × × × × × × ⊗ 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 0 ⊗ ⊗ ⊗ ⊗ ⊗ × × 0 0 0 0 0 0 d 1

  12. × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 + × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × × 0 0 0 0 0 0 0 0 0 0 0 0 × × 0 0 0 0 0 0 d 1

  13. × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 + × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × ⊗ 0 0 0 0 0 0 0 0 0 0 0 0 ⊗ × 0 0 0 0 0 0 d 1

  14. Problem � � � � � � � � s 2 d 1 0 0 − s c s c csd 1 = c 2 d 1 − s 0 c d 1 s c csd 1 ⇒ ???

  15. Solution � � � � � � 0 − s c s d 1 c − s 0 c d 1 s c � � � � � � 1 0 − s c s c = d 1 − s 0 1 c s c � � 0 d 1 = 0 d 1

  16. × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 + × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × ⊗ 0 0 0 0 0 0 0 0 0 0 0 0 ⊗ × 0 0 0 0 0 0 d 1

  17. × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 + × × × × × × 0 0 0 0 0 0 0 0 × × × × × × 0 0 0 0 0 0 0 0 × × × × × + ⊗ 0 0 0 0 0 0 d 1 0 0 0 0 0 ⊗ × 0 0 0 0 0 0 d 1

  18. × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ + × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ 0 0 0 0 0 0 d 1 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 1 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

  19. × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ + × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ 0 0 0 0 0 0 d 1 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 2 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊞

  20. × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ + × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ × × × × × 0 0 0 0 0 0 0 ⊠ ⊠ 0 0 0 0 0 0 d 1 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 2 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

  21. Step 3 × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ + × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 1 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 2 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 3 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

  22. × × × × ⊗ ⊗ ⊗ 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ + × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3

  23. × × × × 0 0 0 0 0 0 0 0 0 0 × × × × ⊗ ⊗ ⊗ 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ + × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 3

  24. × × × × 0 0 0 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 0 0 0 × × × × ⊗ ⊗ ⊗ 0 0 0 0 0 0 0 + × × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ d 1 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ d 2 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ d 3

  25. × × × × 0 0 0 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 0 0 0 + × × × × ⊗ ⊗ ⊗ 0 0 0 0 0 0 0 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 1 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 2 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 3

  26. × × × × 0 0 0 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 0 0 0 × × × × 0 0 0 0 0 0 0 0 0 0 + × × × + ⊗ ⊗ ⊗ 0 0 0 0 0 0 d 1 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 1 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 2 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 3

  27. × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ + 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 3

  28. × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ + 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊞ ⊠ ⊠ d 2 0 0 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ d 3

  29. × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 0 ⊠ ⊠ + 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 1 ⊗ ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ d 2 0 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ ⊠ d 3

  30. × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ + 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 0 0 0 0 0 ⊠ ⊠ d 3

  31. × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ + 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊞ ⊠ d 3 0 0 0 0 0 0 0 0 0 0 0 ⊠ ⊠ d 3

  32. × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ + 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 ⊗ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3 0 0 0 0 0 ⊗ 0 0 0 0 0 0 ⊠ d 3

  33. × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ + 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3

  34. × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ + 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊞ d 4

  35. × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ × × × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ + 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 4

  36. A second algorithm Before the last step of the first algorithm: × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 1 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 2 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ + 0 0 0 0 0 0 d 3 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 4 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 5 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 6

  37. When applying the first algorithm starting with D = [ d 2 , d 3 , . . . , d n , ⋆ ] with ⋆ an arbitrary element, instead of [ d 1 , d 2 , . . . , d n ] , we get the following situation before the last step: × 0 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 2 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 d 3 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ + 0 0 0 0 0 0 d 4 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 5 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 6 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 7

  38. No last step necessary: 0 0 0 0 0 0 ⊞ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 1 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 2 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 3 + 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 4 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 5 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 6 0 0 0 0 0 0 ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ d 7

  39. Any arbitrary symmetric matrix can be transformed into a symmetric diagonal-plus-semiseparable one with free choice of the diagonal by means of an orthogonal similarity transformation Q such that Qe 1 = e 1 .

  40. II. Accuracy −13 10 −14 10 −15 10 Tridiagonal Semiseparable Diagonal−plus−semiseparable −16 10 0 500 1000 1500 2000 2500

  41. III. Computational complexity −7 2.5 x 10 Tridiagonal Semiseparable Diagonal−plus−semiseparable 2 1.5 1 0.5 500 1000 1500 2000 2500

  42. IV. Convergence behavior of reduction algorithm into diagonal-plus-semiseparable form

  43. For the reduction to semiseparable form Eigenvalues are equidistant 1 : 200. 200 180 160 140 120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200

  44. Eigenvalues 1 : 100 and 1000 : 1100. 1200 1000 800 600 400 200 0 0 20 40 60 80 100 120 140 160 180 200

  45. For the reduction to diagonal-plus-semiseparable form Some notation A (0) = A A ( m ) m A ( m − 1) Q m Q T =   R T  A m 1 =  ( D + S ) m R 1 Q T = 1: m AQ 1: m where ( D + S ) m is a square diagonal-plus- semiseparable matrix of dimensions ( m + 1 ) × ( m + 1 ) .

  46. Lemma Q 1 : m < e n > = ( A − d m I )( A − d m − 1 I ) . . . ( A − d 1 I ) < e n >, for m = 1 , 2 , . . . and Q 1 : 0 = I.

  47. Proof. . For m = 0 : Q 1 : 0 < e n > = < e n > . . Suppose the theorem is true for m − 1, i.e., Q 1 : m − 1 < e n > = ( A − d m − 1 I ) . . . ( A − d 2 I )( A − d 1 I ) < e n > . m A ( m − 1 ) is of the form: The structure of Q T     × . . . × 0 . . . 0 0     . . . . ... . . . .     . . . .             × × 0 0 0 . . . . . .     Q T +     m     × × × 0 . . . . . . d 1         . . . . ... ...     . . . .     . . . .         × × × × . . . . . . d m Q T = H + m D

  48. Hence, m ( A ( m − 1) ) Q T H + Q T = m D Q T m ( Q T H + Q T 1: m − 1 AQ 1: m − 1 ) = m D ⇒ AQ 1: m − 1 − Q 1: m − 1 D = Q 1: m H Applying the former equality on < e n > and using the induction hypothesis, we derive that: ( AQ 1: m − 1 − Q 1: m − 1 D ) < e n > = Q 1: m H < e n > ( AQ 1: m − 1 − Q 1: m − 1 d m I ) < e n > = Q 1: m < e n > ⇒ ( A − d m I )( A − d m − 1 I ) . . . ( A − d 1 I ) < e n > = Q 1: m < e n >

  49. Lanczos-Ritz convergence behavior a) Lanczos-Ritz values Because AQ 1: m = Q 1: m A ( m ) equals:   R T  A m � ← Q 1: m |− − → � ← Q 1: m |− − → � � 1  . = A Q 1: m Q 1: m ( D + S ) m R 1 Hence, the eigenvalues of ( D + S ) m are the Ritz-values of A with respect to the subspace spanned by the columns of − → Q 1 : m .

  50. b) Connection with the Krylov subspace Some notation K m = < e n , Ae n , A 2 e n , . . . , A m e n >   ˜ hq T H h    0 × × × ˜ . . . H ∈ R ( n − m − 1) × ( n − m − 2)          0 × h ∈ R ( n − m − 1) × 1 Q m + 1 = .     . . .  ...    q ∈ R ( m +1) × 1 . . .    . . .     0 0 0 × ×

  51. We want to prove by induction that: col ( − → � � span Q 1 : m + 1 ) = K m + 1 . We have:   hq T h   × × × . . .     − → [ ← Q 1: m |− − →   0 × = Q 1: m ] Q 1: m +1 .     . .   ... . .   . .     0 0 × ×   × × × . . .   0 ×   ← Q 1: m h [1 , q T ] + − − →   = Q 1: m . . .   ... . .   . .     0 0 × ×

  52. Because: col ( − → � � = K m = < e n , Ae n , . . . , A m e n > • Q 1: m ) span − → • Q 1: m +1 < e n > = ( A − d m +1 I ) . . . ( A − d 1 I ) < e n > ← − ⇒ Q 1: m h ∈ K m +1 \K m We get: col ( − → � � = K m + 1 = < e n , Ae n , . . . , A m + 1 e n > span Q 1 : m + 1 )

  53. Theorem The eigenvalues of ( D + S ) m , the lower diagonal blocks that appear during the reduction algorithm, are the Lanczos-Ritz values of A with respect to the Krylov subspace K m .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend