ordinal social ranking simulations for cp majority rule
play

Ordinal social ranking : simulations for CP-majority rule Nicolas - PowerPoint PPT Presentation

Ordinal social ranking : simulations for CP-majority rule Ordinal social ranking : simulations for CP-majority rule Nicolas Fayard 1 and Meltem ztrk 1 1 LAMSADE, Universit Paris-Dauphine DA2PL 2018- Poznan 1/25 Ordinal social ranking :


  1. Ordinal social ranking : simulations for CP-majority rule Ordinal social ranking : simulations for CP-majority rule Nicolas Fayard 1 and Meltem Öztürk 1 1 LAMSADE, Université Paris-Dauphine DA2PL 2018- Poznan 1/25

  2. Ordinal social ranking : simulations for CP-majority rule Social ranking problem 1 CP-Majority rule 2 CP-majority and transitive social ranking 3 Learning a CP-majority with maximum coalitions 4 2/25

  3. Ordinal social ranking : simulations for CP-majority rule Social ranking problem Social ranking problem : example A company with three employees 1 , 2 and 3 working in the same department. According to the opinion of the manager of the company, the job performance of the different teams S ⊆ N = { 1 , 2 , 3 } is as follows : { 1 , 2 , 3 } ≻ { 3 } ≻ { 1 , 3 } ≻ { 2 , 3 } ≻ { 2 } ≻ { 1 , 2 } ≻ { 1 } ≻ ∅ 3/25

  4. Ordinal social ranking : simulations for CP-majority rule Social ranking problem Social ranking problem : example { 1 , 2 , 3 } ≻ { 3 } ≻ { 1 , 3 } ≻ { 2 , 3 } ≻ { 2 } ≻ { 1 , 2 } ≻ { 1 } ≻ ∅ How to make a ranking over his three employees showing their attitude to work with others as a team or autonomously ? (the ability to cooperate is important) Remark : “Intuitively, 3 seems to be more influential than 1 and 2 ” . Can we state more precisely the reasons driving us to this conclusion? who between 1 and 2 is more “productive”? 4/25

  5. Ordinal social ranking : simulations for CP-majority rule Social ranking problem Formal problem Input : A set of individuals : N = { 1 , . . . , n } A power relation on 2 N : S ≻ T : The “team” S is at least as strong as T . We suppose that ≻ is a complete preorder without any domain restriction. 5/25

  6. Ordinal social ranking : simulations for CP-majority rule Social ranking problem Formal problem Output : A social ranking solution ρ ( ≻ ) , assigning to the power relation ≻ a total preorder on N . iP ≻ j : individual i is considered as more influential than j according to the social ranking ρ ( ≻ ) . iI ≻ j : individual i is considered as influential than j according to the social ranking ρ ( ≻ ) . Example : Power relation : { 1 , 2 , 3 } ≻ { 3 } ≻ { 1 , 3 } ≻ { 2 , 3 } ≻ { 2 } ≻ { 1 , 2 } ≻ { 1 } ≻ ∅ Social ranking : 3 P ≻ 1 I ≻ 2 6/25

  7. Ordinal social ranking : simulations for CP-majority rule CP-Majority rule Ceteris Paribus Ceteris Paribus : all other things being equal To compare i and j , the only information that we use is the comparisons between S ∪ { i } and S ∪ { j } where S is a coalition containing neither i nor j example N = { 1 , 2 , 3 , 4 } with : 1234 ≻ 123 ≻ 124 ≻ 134 ≻ 12 ≻ 13 ≻ 234 ≻ 14 ≻ 2 ≻ 3 ≻ 1 ≻ 23 ≻ 24 ≻ 23 ≻ 4 1 vs. 2 S 1 ≺ 2 ∅ { 3 } 13 ≻ 23 { 4 } 14 ≻ 24 { 34 } 134 ≻ 234 7/25

  8. Ordinal social ranking : simulations for CP-majority rule CP-Majority rule Ceteris Paribus Majority Definition (Ceteris Paribus Majority Rule) Let ≻∈ . The ceteris paribus majority relation (CP-majority) is the binary relation R � ⊆ N × N such that for all x , y ∈ N : xP ≻ y ⇔ d xy ( ≻ ) > d yx ( ≻ ) . xI ≻ y ⇔ d xy ( ≻ ) = d yx ( ≻ ) . D ij ( ≻ ) = { S ∈ 2 N \{ i , j } : S ∪ { i } ≻ S ∪ { j }} . We denote the cardinalities of D ij ( ≻ ) as d ij ( ≻ ) . 8/25

  9. Ordinal social ranking : simulations for CP-majority rule CP-Majority rule Ceteris Paribus Majority Rule example N = { 1 , 2 , 3 , 4 } with : 1234 ≻ 123 ≻ 124 ≻ 134 ≻ 12 ≻ 13 ≻ 234 ≻ 14 ≻ 2 ≻ 3 ≻ 1 ≻ 23 ≻ 24 ≻ 23 ≻ 4 1 vs. 2 1 vs. 3 S S 1 ≺ 2 1 ≺ 3 ∅ ∅ { 3 } 13 ≻ 23 { 2 } 12 ≻ 23 { 4 } 14 ≻ 24 { 4 } 14 ≺ 34 { 34 } 134 ≻ 234 { 24 } 124 ≻ 234 1 P ≻ 2 1 I ≻ 3 Remark : Coalitions can be seen as voters Remark : The number of coalition voting for a unique binary relation is even 9/25

  10. Ordinal social ranking : simulations for CP-majority rule CP-Majority rule Condorcet-like paradox 2 ≻ 1 ≻ 3 ≻ 4 ≻ 23 ≻ 13 ≻ 12 ≻ 14 ≻ 34 ≻ 24 ≻ 134 ≻ 124 ≻ 234 ≻ 123 A = { 1 , 2 , 3 } 1 vs. 2 2 vs. 3 1 vs. 3 1 ≺ 2 2 ≻ 3 1 ≻ 3 13 ≺ 23 12 ≺ 13 12 ≺ 23 14 ≻ 24 34 ≺ 24 14 ≻ 34 134 ≺ 234 124 ≺ 134 124 ≺ 234 2 P ≻ 1 3 P ≻ 2 1 P ≻ 3 10/25

  11. Ordinal social ranking : simulations for CP-majority rule CP-majority and transitive social ranking Simulations 1 ≻ 2 ≻ 3 ≻ 12 ≻ 13 ≻ 23 and 12 ⊐ 13 ⊐ 23 ⊐ 1 ⊐ 2 ⊐ 3 share the same CP-information table Transitive solution? Unique Condorcet winner? N 3 4 5 6 2 4 8 16 Nbr of voters 36 414 720 100 000 100 000 Nbr of different (all) (all) CP-information tables 33.33 26.66 13.93 9.5 % of Condorcet winner 66.66 40 19.5 10.5 % of transitive solution T ABLE – Probability to have Condorcet winner and a transitive social ranking 11/25

  12. Ordinal social ranking : simulations for CP-majority rule CP-majority and transitive social ranking Simulations 12/25

  13. Ordinal social ranking : simulations for CP-majority rule CP-majority and transitive social ranking Removing some coalitions for a transitive social ranking using CP-majority Max � s S s s P Sij × S s ≥ − M ( 1 − R ij ) � � ∀ i , j s . t . R a 1 a 2 + R a 2 a 3 + .... + R a n − 1 a n − R a k a k − 1 < n − 1 * For all a 1 , a 2 , ..., a n forming a cycle, for all k ∈ { a 1 , a 2 , ..., a n } and for all n . with : � 1 if S ∪ { i } ≻ S ∪ { j } ( i . ) Power relation : P Sij = − 1 if S ∪ { j } ≻ S ∪ { i } � 1 if iP ≻ j ( ii . ) Social ranking : R ij = 0 otherwise � 1 if the coalition S s is kept ( iii . ) Decision variables for coalition : S s = 0 otherwise 13/25

  14. Ordinal social ranking : simulations for CP-majority rule CP-majority and transitive social ranking Removing some coalitions for a transitive socialranking using CP-majority F IGURE – Probability of Condorcet-like cycles and Condorcet winner 14/25

  15. Ordinal social ranking : simulations for CP-majority rule CP-majority and transitive social ranking Probability for a coalition to be removed S 1 2 3 4 ∅ probability 40.35 11.13 10.99 11.09 15.18 S 12 13 14 23 24 34 probability 4.20 4.53 4.15 4.60 6.10 5.73 T ABLE – Probability for a coalition to be removed (in %), for N = 4 (10 000 simulations) 15/25

  16. Ordinal social ranking : simulations for CP-majority rule CP-majority and transitive social ranking Ceteris Paribus Majority Rule example N = { 1 , 2 , 3 , 4 } with : 1234 ≻ 123 ≻ 124 ≻ 134 ≻ 12 ≻ 13 ≻ 234 ≻ 14 ≻ 2 ≻ 3 ≻ 1 ≻ 23 ≻ 24 ≻ 23 ≻ 4 1 vs. 2 1 vs. 3 S S 1 ≺ 2 1 ≺ 3 ∅ ∅ { 3 } 13 ≻ 23 { 2 } 12 ≻ 23 { 4 } 14 ≻ 24 { 4 } 14 ≺ 34 { 34 } 134 ≻ 234 { 24 } 124 ≻ 234 1 P ≻ 2 1 I ≻ 3 16/25

  17. Ordinal social ranking : simulations for CP-majority rule Learning a CP-majority with maximum coalitions Data sharing the same rule F IGURE – Learning rule 17/25

  18. Ordinal social ranking : simulations for CP-majority rule Learning a CP-majority with maximum coalitions Max � s S s �� S P Sijk × S s ≥ − M ( 1 − R ijk ) ∀ i , j , k s . t . � S P Sijk × S s ≤ − 1 + MR ijk ∀ i , j , k With : i ) Power relation :  1 if S ∪ { i } ≻ S ∪ { j } for the power relation k   − 1 if S ∪ { j } ≻ S ∪ { i } for the power relation k P Sijk =  0 otherwise  ii ) Social ranking : � 1 if iP ≻ j in the social ranking k R ijk = 0 otherwise iii ) Decision Variables (common to all power relations!) : S s = 1 if S s is kept 18/25

  19. Ordinal social ranking : simulations for CP-majority rule Learning a CP-majority with maximum coalitions F IGURE – Probability to find the CP-majority rule with exact subset of voting coalition for n = 4 for 500 symulation 19/25

  20. Ordinal social ranking : simulations for CP-majority rule Learning a CP-majority with maximum coalitions Data sharing the same subset of coalitions : example Power Relation Sub-rule Social Ranking 1 , 2 , 3 , 12 , 34 PR 1 SR 1 1 , 3 , 12 , 23 , 34 PR 2 SR 2 ∅ , 1 , 3 , 12 , 34 PR 3 SR 3 Common CP-subset : 1 , 3 , 12 , 34 20/25

  21. Ordinal social ranking : simulations for CP-majority rule Learning a CP-majority with maximum coalitions Min � ijk V ijk  s P Sijk × S s ≥ − M ( 1 − R ijk ) ∀ ijk �    S P Sijk × S s ≤ − 1 + MR ijk ∀ ijk �     R ijk + R jik = 1 ∀ ijk s . t .  O ijk − R ijk − V ijk ≤ 0 ∀ ijk     O ijk − R ijk + V ijk ≥ 0 ∀ ijk   With : i ) Power relation : � 1 if S ∪ { i } ≻ S ∪ { j } for the power relation k P Sijk = − 1 if S ∪ { j } ≻ S ∪ { i } for the power relation k ii ) Objective social ranking : O ijk = 1 if iP ≻ j in the social ranking O k iii ) Decision Variables social ranking : R ijk = 1 if iP ≻ j in the social ranking k iv ) Decision variables for coalition : S S = 1 if S S is kept v ) Decision variables Kemeny distance : V ijk = 1 if R ijk � = O ijk 21/25

  22. Ordinal social ranking : simulations for CP-majority rule Learning a CP-majority with maximum coalitions Data sharing the same subset of coalitions F IGURE – Learning rules with noise for n = 4, Y being the number of coalitions shared by all power relations, with 1000 simulations 22/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend