optimal price zones of electricity markets
play

Optimal Price Zones of Electricity Markets A Mixed-Integer - PowerPoint PPT Presentation

Optimal Price Zones of Electricity Markets A Mixed-Integer Multilevel Model and Global Solution Approaches V. Grimm, T. Kleinert, F . Liers, Martin Schmidt, G. Zttl FAU Erlangen-Nrnberg, Discrete Optimization 21st Combinatorial Optimization


  1. Optimal Price Zones of Electricity Markets A Mixed-Integer Multilevel Model and Global Solution Approaches V. Grimm, T. Kleinert, F . Liers, Martin Schmidt, G. Zöttl FAU Erlangen-Nürnberg, Discrete Optimization 21st Combinatorial Optimization Workshop, Aussois, 2017

  2. Outline Motivation A Mixed-Integer Multilevel Model Solution Approaches Computational Results M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 2 · ·

  3. Outline Motivation A Mixed-Integer Multilevel Model Solution Approaches Computational Results M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 3 · ·

  4. Liberalized Electricity Markets Timing 1. Generation capacity investment by profit-maximizing firms 2. Spot-market trading • Energy-only market: no network considered • Sole requirement: market clearing 3. Cost-based redispatch (if required) t | T | periods of spot market generation capacity trading (firms) and redispatch expansion (firms) after each spot market (TSO) M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 4 · ·

  5. Cost-Based Redispatch • Technically infeasible spot-market results → redispatch • Modification of traded quantities • Redispatched electricity can be transported • Objective: minimum redispatch cost M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 5 · ·

  6. Cost-Based Redispatch • Technically infeasible spot-market results → redispatch • Modification of traded quantities • Redispatched electricity can be transported • Objective: minimum redispatch cost Price • Energy-only market: equilibrium quantity B equilibrium price C F A • Transmission constraints: Supply C transportable capacity D E Demand • Producer pays to TSO: ABDE • TSO pays to consumer: ABDF • TSO’s cost: AEF Quantity D B M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 5 · ·

  7. Zonal Pricing • Implemented in parts of Europe, Australia, or Latin America • Market area is divided into price zones • Intra-zonal network constraints: ignored at the spot market • Inter-zonal network constraints: (partly) respected at the spot market • Bad zoning: distorted investment incentives for generation capacity leading to inefficiencies • Good zoning: congestion issues are reflected (most appropriately) in spot-market trading • Goal of the regulator: optimal configuration of price zones • Maximization of resulting social welfare M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 6 · ·

  8. Outline Motivation A Mixed-Integer Multilevel Model Solution Approaches Computational Results M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 7 · ·

  9. Some Notation • Transmission network: directed graph G = ( N , L ) • Scenarios/time periods: T = { t 1 , . . . , t | T | } • Node set: n ∈ N • Consumers c ∈ C n with demand d t , c ≥ 0 • Elastic demand modeled by continuous and strictly decreasing function p t , c ( d t , c ) • Generators g with production q t , g ∈ [ 0 , ¯ q g ] • Some producers may invest in generation capacity ¯ q g • Arc set: l ∈ L • Transmission lines with capacity ¯ f l • Lossless DC power flow model • Price zones Z i : parts of a partition N = Z 1 ∪ · · · ∪ Z k • k is given as input M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 8 · ·

  10. Trilevel Market Model: Timing t specification | T | periods of spot market generation capacity of zones trading (firms) and redispatch expansion (firms) (regulator) after each spot market (TSO) M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 9 · ·

  11. Trilevel Market Model: Model Structure max social welfare (regulator) s.t. graph partitioning with connectivity constraints max profits (competitive firms) s.t. generation capacity investment, production & demand constraints, Kirchhoff’s 1st law (inter-zonal), flow restrictions (inter-zonal) min redispatch costs (TSO) s.t. production & demand constraints, lossless DC power flow constraints M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 10 · ·

  12. 1st Level: Specification of Price Zones Maximization of total social welfare   � d red t , c � � � �  � � � c inv q new c var g q red g ¯ ψ 1 := p t , c ( ω ) d ω − + g t , g  0 g ∈ G new t ∈ T n ∈ N c ∈ C n n ∈ N t ∈ T g ∈ G all n n subject to graph partitioning with multi-commodity flow connectivity constraints M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 11 · ·

  13. 1st Level: Specification of Price Zones Maximization of total social welfare   � d red t , c � � � �  � � � c inv q new c var g q red g ¯ ψ 1 := p t , c ( ω ) d ω − + g t , g  0 g ∈ G new t ∈ T n ∈ N c ∈ C n n ∈ N t ∈ T g ∈ G all n n subject to graph partitioning with multi-commodity flow connectivity constraints � x n , i = 1 n ∈ N i ∈ [ k ] � z n , i = 1 i ∈ [ k ] n ∈ N z n , i ≤ x n , i n ∈ N , i ∈ [ k ] � m i a ≤ Mx n , i n ∈ N , i ∈ [ k ] a ∈ δ out n � � m i m i a − a ≥ x n , i − Mz n , i n ∈ N , i ∈ [ k ] a ∈ δ out a ∈ δ in n n M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 11 · ·

  14. 2nd Level: Capacity Investment & Spot Market Economic Assumption: Perfect Competition • No market power; otherwise multiple equilibria (Zöttl, 2010) • Mathematically “necessary” assumption • Commonly used in electricity market literature: Boucher, Smeers (2001), Daxhelet, Smeers (2007), Grimm, Martin, S., Weibelzahl, Zöttl (2016) M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 12 · ·

  15. 2nd Level: Capacity Investment & Spot Market Economic Assumption: Perfect Competition • No market power; otherwise multiple equilibria (Zöttl, 2010) • Mathematically “necessary” assumption • Commonly used in electricity market literature: Boucher, Smeers (2001), Daxhelet, Smeers (2007), Grimm, Martin, S., Weibelzahl, Zöttl (2016) Objective Profit (= total social welfare) maximization   � d spot t , c � � � �  � � � g q spot c inv q new c var g ¯ ψ 2 := p t , c ( ω ) d ω − + g  t , g 0 g ∈ G new t ∈ T n ∈ N c ∈ C n n ∈ N t ∈ T g ∈ G all n n M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 12 · ·

  16. 2nd Level: Capacity Investment & Spot Market Zonal version of Kirchhoff’s first law d spot � d spot q spot � q spot n ∈ N , t ∈ T = t , c , = t , n t , n t , g g ∈ G all c ∈ C n n � x n , i d spot � x n , i q spot D i Q i i ∈ [ k ], t ∈ T t = t , n , t = t , n n ∈ N n ∈ N � ( 1 − x n , i ) x m , i f spot F in i , t = i ∈ [ k ], t ∈ T t , l l =( n , m ) ∈ L � x n , i ( 1 − x m , i ) f spot F out = i ∈ [ k ], t ∈ T i , t t , l l =( n , m ) ∈ L D i t + F out = Q i t + F in i ∈ [ k ], t ∈ T i , t i , t Nonlinearities can be linearized M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 13 · ·

  17. 2nd Level: Capacity Investment & Spot Market Flow restrictions on inter-zonal lines − ¯ ≤ ¯ f l − ( 1 − y l ) M ≤ f spot f l + ( 1 − y l ) M l ∈ L , t ∈ T t , l Demand and production bounds 0 ≤ d spot t ∈ T , n ∈ N , c ∈ C n t , c 0 ≤ q spot q new t ∈ T , n ∈ N , g ∈ G new ≤ τ ¯ g n t , g 0 ≤ q spot q ex t ∈ T , n ∈ N , g ∈ G ex ≤ τ ¯ g n t , g M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 14 · ·

  18. 3rd Level: Cost-Based Redispatch Minimize redispatch costs � d spot t , c � � � � � � t , g − q spot c var g ( q red ψ 3 := p t , c ( ω ) d ω + t , g ) d red t ∈ T n ∈ N c ∈ C n t ∈ T n ∈ N g ∈ G all t , c n subject to lossless DC power flow model: • Kirchhoff’s 1st law � � � � d red f red q red f red n ∈ N , t ∈ T t , c + = t , g + t , l , t , l l ∈ δ out g ∈ G all l ∈ δ in c ∈ C n n n n • Kirchhoff’s 2nd law f red = B l ( θ t , n − θ t , m ), l = ( n , m ) ∈ L , t ∈ T t , l n = 0 , t ∈ T θ t ,ˆ • Flow capacities − ¯ ≤ ¯ f l ≤ f red f l , l ∈ L , t ∈ T t , l M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 15 · ·

  19. Model Discussion 1st Level MIQP with graph partitioning and multi-commodity flow model 2nd Level MIQP; no “genuine” 2nd level integers 3rd Level QP with lossless DC power flow model max ψ 1 ( W 2 , W 3 ) s.t. ( W 1 , X 1 ) ∈ Ω 1 Level 1 max ψ 2 ( W 2 ) Level 2 s.t. ( W 2 , X 1 ) ∈ Ω 2 min ψ 3 ( W 2 , W 3 ) Level 3 s.t. ( W 2 , W 3 ) ∈ Ω 3 M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 16 · ·

  20. Outline Motivation A Mixed-Integer Multilevel Model Solution Approaches Computational Results M. Schmidt FAU Erlangen-Nürnberg Optimal Price Zones of Electricity Markets Aussois 2017 17 · ·

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend