optical quantum dots for quantum information
play

OPTICAL QUANTUM DOTS FOR QUANTUM INFORMATION Tom Reinecke Naval - PowerPoint PPT Presentation

OPTICAL QUANTUM DOTS FOR QUANTUM INFORMATION Tom Reinecke Naval Research Laboratory Washington, DC , USA reinecke@nrl.navy.mil outline outline single spin qubits single spin qubits two qubit gates two qubit gates


  1. OPTICAL QUANTUM DOTS FOR QUANTUM INFORMATION Tom Reinecke Naval Research Laboratory Washington, DC , USA reinecke@nrl.navy.mil outline outline • single spin qubits • single spin qubits • two qubit gates • two qubit gates • entanglement in QD molecules • entanglement in QD molecules NRL theory: S. Economou, D. Solenov, T. Reinecke NRL expt: D. Gammon, A. Bracker, S. Carter U. Wuerzburg: fabrication, expt U. Dortmund: expt support: DARPA, NSA and ONR

  2. Optical quantum dots z θ spin in QD φ E 2 x E 1 Ψ = α ↑ + β ↓ ~5-10 nm Quantum dots optical properties, control (trion) • spin natural qubit • ‘long’ coherence • fast optical manipulations • integrate into semiconductor technology • potentially scalable • fixed locations HH LH

  3. Quantum dots -1V QD C.B. E F 0V e - Stranski-Krastanov ‘self V.B. organized’ QDs spins in low states in QDs substrate GaAs : small lattice constant deposited Material InAs : large lattice constant X + X 2- X 3- X ° X - QDs WL trion 1272 X + 1269 Intensity PL energy (meV) X ° 1266 1263 X - 1260 X 3- X 2- 1257 S-shell 1254 20.1 33.6 47.0 60.4 73.8 87.2 Electric Field (kV/cm)

  4. z Spin initialization, manipulation x B x ≠ 0 B = 0 | 3/2 3/2 > |-3/2> |-3/2> |3/2> |3/2> |-3/2> |-3/2> σ + σ + σ - σ - σ + σ - |1/2>+ |1/2>+|- |-1/2> 1/2> ≡ |+x> |+x> |1/2>-|-1/2> |1/2>-|-1/2> ≡ |1/2> |1/2> |-1/2> -1/2> |-x> |-x> • Voigt field mixes spin states & • No Raman transitions |1/2> � |-1/2> enables Raman transitions • Cannot make arbitrary spin rotation • optical pumping gives initialization (‘z basis’ - growth direction/optical axis) (‘x basis’)

  5. Useful feature of 2-level systems ⎛ ⎞ 0 ( ) V t ge ⎜ ⎟ ( ) ~ H t |e> − * ( ) ( ) V t E E ⎝ ⎠ Δ 0 ge e I analytical solution β −1 = Ω β Δ ) i t sec ( V h t e t |g> ge Δ = detuning β = pulse bandwidth |e> properties: Δ = 0 Ω = σ � 2 π , no excitation left in |e> (ι) (ii) pulse area indep of detuning (iii) |g> acquires phase β Δ 2 φ = Δ − tan( ) β 2 2 |g> (Rosen & Zener, Phys. Rev., 1932)

  6. Spin rotations around one axis (z) | 3/2 3/2 > |-3/2> |-3/2> ω ⎛ ⎞ 0 0 B ⎜ ⎟ ω Ω ω i t ( ) ~ 0 ( ) H t t e 0 ⎜ ⎟ σ + B ⎜ ⎟ − ω Ω ε * i t ⎝ 0 ( ) ⎠ t e 0 T B { } ‘z-basis’ , , z z T |1/2> |1/2> |-1/2> |-1/2> Pulses: Δ = Ω β ) i t sec ( V h t e B x ge (fast pulses: β >> ω B ) Properties: z (i) 2 π pulses return to spin subspace with no trion excitation θ (ii) 2 π pulses give phase φ of |z> wrt |z’> equivalent to a z rotation φ φ = β Δ 2arctan( / ) x

  7. Rotations around another axis (x) |3/2> - |3/2> - |-3/2> -3/2> • single, broad band, linearly |3/2> |3/2> + + |-3/2 |-3/2> polarized pulse couples both transitions H H • different phase |x> and |x’> • pulse area independent of detuning • gives rotation ( φ 1 - φ 2 ) |+ |+x> x> |-x> |-x> z π x polarizations x general rotations from those about z and x

  8. general rotations, full solutions •density matrix calculations including mixing, losses pulses z rotation z rotation •arbitrary rotation from rotations around two axes x rotation ( ) ( ) + φ = π φ π ( ) / 2 ( ) / 2 R R R R y z x z Fidelity 99.28% fast gates ~ 60 psec parameters for InAs QDs Economou & Reinecke, PRL (2007)

  9. Spin rotations – φ vs Δ S z control σ ⎛ ⎞ φ = 2 arctan ⎜ ⎟ Δ ⎝ ⎠ general rotations demonstrated by varying precession Greilich et al , Nature Physics 5 , 262 (2009)

  10. Cavity coupling Cavity development fast, distant, frequency selective coupling and architectures laser cavity ~ μ m strong coupling (coherent) weak coupling (Purcell) In 0.3 Ga 0.7 As 100 nm ω = ω ± − γ + γ 2 2 ( ) / 4 g ± − c e p c e 2 e f = g 4 πκε V 0 m

  11. Strong coupling one dot spectra one dot spectra γ C =0.18 meV r C =0.75 μ m C 4000 40K γ X <0.05 meV P=2 μ W X Temperature Q= 7350 3500 25 K 3000 Intensity (arb units) 2500 Intensity (a.u.) 2000 1500 1000 C 500 X 10 K 10K 0 1.3260 1.3265 1.3270 1.3275 1.3280 1.3285 1322.5 1323.0 1323.5 Energy (meV) Temperature (K) d050318 • g ex-p ~ 100-200 meV • 40 pillars from several wafers Reithmaier et al, Nature 432 , 197 (2005) with g ex-p > 50 meV • confirmed by intensity and linewidths

  12. Two qubit entangling gate (theory) Requirements for two qubit (entangling) gate: • (Long-range) physical interaction • Dynamical control of interaction • Conditionality (control-U operation) qubit 2 • Scalability ω 0 cavity mode qubit 1 qubit 1 InAs dot InAs dot entangled e − e − GaAs If “1” growth qubit 2 Add “ ‐ ” direction ( π phase) Magnetic Field photonic crystal membrane compatible with one qubit operations

  13. system n = System System ( 1,2) = − ω + ω † † H c c c c − ↑ ↑ ↓ ↓ e t n , e e n n n n ( ) ( ) + ε − ω + ε + ω † † Magnetic field perpendicular t t t t ↑ ↑ ↓ ↓ n h n h n n n n to the growth axis (z) = ω † H a a | ⇓〉 z c 0 | ⇑〉 ( )( ) = + + + † † † . . H g t c t c h c a a r E ฀ − ↑ ↑ ↓ ↓ E ฀ E e c n , n n n n ⊥ B Pulses Pulses ( ) ∑ | ↓〉 = Ω − ω + † ( ) ( )cos . . | ↑〉 V t t t t t c h c ξξ ξ ξ ( ') ' p p p n n p ω ω ξξ =↑ ↓ ' , = σ + σ (1) (2) e e = H 1,2 n qubits z z 2 2

  14. spectra | ⇓⇓〉 Energy qubits + | ⇓⇑〉 2 photons trion 2 + | ⇑⇓〉 photon | ⇑⇑〉 ω trion 1 + 0 Energy photon (cavity mode frequency) trion 1+2 ω 0 qubits + photon | ↓⇓〉 | ↓⇑〉 trion 2 | ↑⇓〉 | ↑⇑〉 trion 1 | ⇓↓〉 | ⇑↓〉 | ⇓↑〉 | ⇑↑〉 qubit states relevant optical transitions

  15. Single qubit operations: compatibility • effects of cavity-induced splitting in one-particle sector negligible for short pulses • single qubit operations same as previously | ↓⇓〉 | ↓⇑〉 • need single and two-qubit operations for complete set of | ↑⇓〉 | ↑⇑〉 operations | ⇓↓〉 trion | ⇑↓〉 | ⇓↑〉 | ⇑↑〉 | ↓↓〉 | ↑↓〉 | ↓〉 | ↑↑〉 | ↑↓〉 | ↓↑〉 | ↑〉 | ↑↑〉 2 0 fast pulses

  16. Two-qubit gates: CZ gate universal CNOT one ‐ qubit gates U = H H CZ ⎛ ⎞ ψ 〉 = α ↑↑〉 + β ↑↓〉 + δ ↓↑〉 + γ ↓↓〉 1 0 0 0 | | | | | ⎜ ⎟ − 0 1 0 0 ⎜ ⎟ = ⎜ U ⎟ g 0 0 1 0 ψ 〉 = α ↑↑〉 − β ↑↓〉 + δ ↓↑〉 + γ ↓↓〉 | | | | | ⎜ ⎟ ⎝ 0 0 0 1 ⎠

  17. CZ gate | ⇓⇓〉 | ⇓⇑〉 | ⇑⇓〉 | ⇑⇑〉 Pulse Pulse B B Energy (4 ‐ ‐ 16) 16) (4 ω 0 two ‐ particle two trions (one in each dot) | ↓⇓〉 subspace | ↓⇑〉 phase change (2 π pulse), Pulse B − 1 one ‐ | ↑⇓〉 particle one trion | ↑⇑〉 subspace population inversion ( π pulse), Pulse A − − i i | ⇓↓〉 qubit | ⇑↓〉 subspace | ⇓↑〉 ↑↑〉 ↑↓〉 ↓↑〉 ↓↓〉 | | | | Pulse A | ⇑↑〉 Pulse A (0 ‐ ‐ 4 and 1 4 and 1 ‐ ‐ 6) 6) (0 − × − × − − × − ( ) ( 1) ( ) ( ) ( ) i i i i +1 ‐ 1

  18. Fidelity Γ cavity 1. losses due to unwanted coherent Γ tr dynamics of off-resonant transitions Γ tr 2. losses due to carrier recombination and cavity losses -- can be improved through e.g., pulse shaping Solenov, Economou and Reinecke, to be published

  19. Scalability • gates for unequal dot excitation energies allow coupling between multiple dots • multiple confined photon exist modes in cavities

  20. 2 electron spins in two dots • Tunnel coupled QDs • Exchange interaction always on • Can access optically single qubit and two-qubit states Energy diagram S T Initialization triplet X singlet Δ T/T Energy (1 division =25 μ eV) kinetic T exchange Δ ee S

  21. Short vs. Long optical pulses Short pulses Long pulses Time domain: Time domain: • Acts on single spin state because • Acts on joint spin state because slower faster than exchange interaction than exchange interaction Frequency domain: Frequency domain: X X T T S S Acts just on S Acts on S + T

  22. Optical 2-qubit phase gate ( ) ↑ ↓ − ↓ ↑ ⇒ φ ↑ ↓ − ↓ ↑ e i SWAP gate ↑↓ ⇒ ↑ ↓ − ↓ ↑ ϕ = π , for 2 i Pulse sequence pulse 1 pulse 2 2 π control pulse (1 qubit) (1 qubit, 2 qubit, fixed delay variable delay) & 2qubit pulse Ramsey fringes with control pulse & 2qubit pulse Can vary phase change from -180 ° to Kim et al , Nat. Physics, 7, 223 (2011) +180 ° with pulse detuning

  23. Alternative qubit: hole spin Ramsey fringes of single hole qubit Coupled hole qubits B=0T T S

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend