on trace free characters and abelian knot contact homology
play

On trace-free characters and abelian knot contact homology y + - PowerPoint PPT Presentation

On trace-free characters and abelian knot contact homology y + x 2 1 = 0 y S 0 (3 1 ) y 2 = 0 2 x = (meridian) -1 Fumikazu Nagasato (Meijo University, NAGOYA) 31/05/2012 RIMS Seminar @


  1. ✓ ✏ On trace-free characters and abelian knot contact homology ✒ ✑ − y + x 2 − 1 = 0 y S 0 (3 1 ) y − 2 = 0 2 x = − χ ρ (meridian) -1 Fumikazu Nagasato (Meijo University, NAGOYA) 31/05/2012 RIMS Seminar @ 強羅静雲荘

  2. Notations K : a knot in S 3 E K := S 3 − N ( K ) G ( K ) := π 1 ( E K ), knot group R ( K ) := { ρ : G ( K ) → SL 2 ( C ) , representation } X ( K ) := { χ ρ : G ( K ) → C , characters of ρ ∈ R ( K ) } � � S 0 ( K ) := X ( K ) ∩ χ ρ ( meridian ) = 0 trace-free characters HC ab 0 ( K ) : degree 0 abelian knot contact homology of K introduced by Lenhard Ng � [Ng] Knot and braid invariants from contact homology � I and II , Geom. Topol. 9 (2005) 1

  3. Main theorem Let G ( K ) = � m 1 , · · · , m n | r 1 = 1 , · · · , r n = 1 � be a Wirtinger presentation. Then S 0 ( K ) is realized as the algebraic set ⎧ � ⎫ � (1) x ka = x ij x ia − x ja , x kab = x ij x iab − x jab ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎛ ⎞ ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ∀ Wirtinger triple ⎜ k ⎟ ⎪ � ⎪ ⎪ ⎪ ⎜ ⎟ ⎪ � ⎪ ⎝ a, b ∈ { 1 , · · · , n } , ⎪ ⎪ ⎪ � ⎠ ⎪ ⎪ ⎪ i j ⎪ � ( i, j, k ) ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ � � ⎪ ⎪ ⎪ � ⎪ ( x ab ; x pqr ) ∈ C ( n 2 ) + ( n � � ⎪ ⎪ 3 ) x i 1 j 1 x i 1 j 2 x i 1 j 3 ⎪ � ⎪ � � ⎪ ⎪ ⎪ � ⎪ � � ⎨ ⎬ (2) x i 1 i 2 i 3 · x j 1 j 2 j 3 = 1 � x i 2 j 1 x i 2 j 2 x i 2 j 3 � � � 2 � � (1 ≤ a < b ≤ n ) � � � ⎪ x i 3 j 1 x i 3 j 2 x i 3 j 3 ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ (1 ≤ p < q < r ≤ n ) ⎪ ⎪ (1 ≤ i 1 < i 2 < i 3 ≤ n , 1 ≤ j 1 < j 2 < j 3 ≤ n ) ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ ⎪ � � ⎪ ⎪ ⎪ � � � ⎪ ⎪ 2 x 12 x 1 a x 1 b ⎪ � ⎪ ⎪ � � ⎪ ⎪ � ⎪ ⎪ � � ⎪ ⎪ � ⎪ x 21 2 x 2 a x 2 b � � ⎪ ⎪ ⎪ � ⎪ (3) = 0 � � ⎪ (3 ≤ a < b ≤ n ) ⎪ ⎪ � ⎪ x a 1 x a 2 2 x ab ⎪ � � ⎪ ⎪ � ⎪ � � ⎪ ⎪ ⎪ � ⎪ � � ⎩ ⎭ x b 1 x b 2 x ba 2 � 2

  4. (1) x ka = x ij x ia − x ja (F2) , x kab = x ij x iab − x jab (F3) the fundamental relations (F) � � � � x i 1 j 1 x i 1 j 2 x i 1 j 3 � � � � (2) x i 1 i 2 i 3 · x j 1 j 2 j 3 = 1 x i 2 j 1 x i 2 j 2 x i 2 j 3 � � 2 � � � � x i 3 j 1 x i 3 j 2 x i 3 j 3 the hexagon relations (H) � � � � 2 x 12 x 1 a x 1 b � � � � x 21 2 x 2 a x 2 b � � (3) = 0 � � � x a 1 x a 2 2 x ab � � � � � x b 1 x b 2 x ba 2 the rectangle relations (R) NOTE. x aa := 2, x ba := x ab (symmetric) x i σ (1) i σ (2) i σ (3) := sign( σ ) x i 1 i 2 i 3 ( σ ∈ S 3 ) (anti-sym) x aab = 0 3

  5. Plan of this talk Section 1: An observation of the main theorem Section 2: A rought sketch of proof of the main theorem Section 3: An application to abelian knot contact homology (Ng’s conjecture on abelian knot contact homology)

  6. Section 1: An observation of the main theorem How to get the fundamental relations (F)

  7. Realizing X ( K ) as an algebraic set (a short review) x = m 1 � y = m 1 m − 1 � 2 ✓ ✏ x := − tr( ρ ( � x )) = − tr( m 1 ) K m = m 1 y )) = − tr( m 1 m − 1 y := − tr( ρ ( � 2 ) m 2 ... ✒ ✑ ✓ ✏ Theorem [Gelca-N (JKTR) ], [N (Bull. Korean Math.) ] ( x, y ) ∈ C 2 � � � � X ( K m ) = � ( y − 2) R m ( x, − y ) = 0 , where R m ( x, y ) := S m ( y ) − S m − 1 ( y ) + x 2 � m − 1 i =0 S i ( y ) S n +2 ( z ) = zS n +1 ( z ) − S n ( z ) , S 1 ( z ) = z, S 0 ( z ) = 1 . ✒ ✑ − y + x 2 − 1 EX. R 1 ( x, − y ) = y 2 − x 2 y + y + x 2 − 1 R 2 ( x, − y ) = 4

  8. Realizing S 0 ( K ) as an algebraic set (a short review) ( x, y ) ∈ C 2 � � � � � � − y + x 2 − 1 X (3 1 ) = � ( y − 2) = 0 − y + x 2 − 1 = 0 y = − tr( ρ ( m 1 m − 1 − y + x 2 − 1 = 0 2 )) y = − tr( ρ ( m 1 m − 1 2 )) S 0 (3 1 ) y − 2 = 0 y − 2 = 0 2 2 x = − tr( ρ ( m 1 )) x = − tr( ρ ( m 1 )) − 1 − 1 X (3 1 ) ⊂ C 2 S 0 (3 1 ) = X (3 1 ) ∩ { tr( ρ ( m 1 )) = 0 } ✓ ✏ Definition ( S 0 ( K ) as an algebraic set) S 0 ( K ) := X ( K ) ∩ { tr( ρ ( µ )) = 0 } (w/o multiplicity) ✒ ✑ We want to calculate S 0 ( K ) directly w/o the calculation of X ( K ). 5

  9. Realizing S 0 ( K ) as an algebraic set (a short review) ( x, y ) ∈ C 2 � � � y 2 + y − 1 − x 2 y + x 2 � � � X (4 1 ) = � ( y − 2) = 0 y 2 + y − 1 − x 2 y + x 2 = 0 y = − tr( ρ ( m 1 m − 1 2 )) y − 2 = 0 2 x = − tr( ρ ( m 1 )) √ � � 2 , − 1 ± 5 S 0 (4 1 ) = X (4 1 ) ∩ { tr( ρ ( m 1 )) = 0 } = 2 This can be done because we have the defining poly. of X ( K m ). We want to calculate S 0 ( K ) directly w/o the calculation of X ( K ). 6

  10. A decomposition of E K into H n and handles 2 ∪ ∪ = 4 ∪ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx 1 3 ∪ ∪ 3-handle 2-handles E 4 1 H 4 2 1 2 3 4 1 3 4 7

  11. Presenting attaching curves on a punctured disk 3 2 1 2 3 4 push inside 4 1 draw the "cores" 3 2 2 3 turn 4 upside down 4 4 1 1 8

  12. ✓ ✏ ⎧ ⎪ x 13 x 23 − x 12 = 2 , x 13 = x 23 ⎪ ⎪ ⎪ 3 2 ⎪ ⎪ ⎪ x 12 x 24 − x 14 = 2, x 12 = x 24 ⎪ ⎪ ⎨ x 13 x 14 − x 34 = 2, x 13 = x 14 ⎪ ⎪ ⎪ ⎪ ⎪ x 24 x 34 − x 23 = 2, x 23 = x 24 ⎪ ⎪ 4 ⎪ 1 ⎪ ⎩ a part of (F2) ✒ ✑ EX. For an arbitrary trace-free character χ ρ : � � 1 = m 3 m 1 m − 1 3 m − 1 ρ ( m 3 m 1 m − 1 3 m − 1 − 2 = − tr 2 ) 2 3 3 2 3 2 2 = = − − 4 4 1 4 1 1 � � � � � � ρ ( m 3 m 1 m − 1 ρ ( m − 1 ρ ( m 3 m 1 m − 1 − 2 = − tr 3 ) tr 2 ) + tr 3 m 2 ) 9

  13. ✓ trace-free Kauffman brakcet skein relation (at t = − 1 ) ✏ = − − = 0 = − 2 , , ✒ ✑ 3 3 2 2 = = − 1 4 1 4 � � − 2 = − tr( ρ ( m 3 m 1 m − 1 3 m − 1 ρ ( m 3 m 1 m − 1 2 )) = tr 3 m 2 ) ✓ ✏ in general a loop γ in E K ⇔ − t [ γ ] ( ρ ) := − tr( ρ ([ γ ])) ( χ ρ ∈ S 0 ( K )) trace-free KBSR ⇔ trace-identity ✒ ✑ 10

  14. ✓ trace-free Kauffman brakcet skein relation (at t = − 1 ) ✏ = − − = − 2 = 0 , , ✒ ✑ 2 3 2 3 = = − 4 4 1 1 � � − 2 = − tr( ρ ( m 3 m 1 m − 1 3 m − 1 ρ ( m 3 m 1 m − 1 2 )) = tr 3 m 2 ) Here, by skein relation, we obtain ✓ ✏ + + = ✒ ✑ 10-a

  15. ✓ trace-free Kauffman brakcet skein relation (at t = − 1 ) ✏ = − − = − 2 = 0 , , ✒ ✑ 3 3 2 2 = = − 1 4 1 4 � � − 2 = − tr( ρ ( m 3 m 1 m − 1 3 m − 1 ρ ( m 3 m 1 m − 1 2 )) = tr 3 m 2 ) 3 3 2 2 = − + 4 1 4 1 � � � � ρ ( m 2 m − 1 3 m − 1 ρ ( m 1 m 2 = tr ( ρ ( m 1 m 3 )) tr 3 ) + tr 2 ) · · · continued 10-b

  16. � � ρ ( m 2 m − 1 + tr( ρ ( m − 1 2 m 1 m 2 − 2 = · · · = tr( ρ ( m 1 m 3 ))tr 3 ) 3 )) = tr ( ρ ( m 1 m 3 )) { tr( ρ ( m 2 ))tr( ρ ( m 3 )) − tr ( ρ ( m 2 m 3 )) } � � +tr( ρ ( m − 1 ρ ( m − 1 2 m 1 m 3 ))tr( ρ ( m 3 )) − tr 2 m 1 ) = − tr( ρ ( m 1 m 3 ))tr( ρ ( m 2 m 3 )) + tr( ρ ( m 1 m 2 )) 2 3 2 3 = · · · = − + 4 1 4 1 Set the followings: j j k i x i := = 0 , x ij := , x ijk := i i − tr( ρ ( m i )) = 0 − tr( ρ ( m i m j )) − tr( ρ ( m 1 m j m k )) − 2 = − x 13 x 23 + x 12 (the desired equation) 11

  17. Also we can get: x 13 = x 23 , x 12 = x 24 , x 13 = x 14 , x 23 = x 24 EX. 2 3 3 2 x 13 = sl b ( x 13 ) := = = x 23 1 4 4 1 b x 12 = x 2 13 − 2 , x 24 = x 2 13 − 2, x 34 = x 2 Other relations: 13 − 2 EX. b 3 2 2 3 2 3 x 12 = sl b ( x 12 ) = = = 1 4 1 4 1 4 = − − 1 3 1 3 1 3 = x 2 13 − 2 12

  18. Continuing this work, we obtain all the (F2): ⎧ ⎫ x 13 x 23 − x 12 = 2, x 12 x 24 − x 14 = 2, x 13 x 14 − x 34 = 2, x 24 x 34 − x 23 = 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ x 13 = x 23 , x 12 = x 24 , x 13 = x 14 , x 23 = x 24 ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ x 12 = x 2 13 − 2 , x 24 = x 2 13 − 2, x 34 = x 2 13 − 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ x 13 = x 14 x 24 − x 12 , x 14 = x 23 x 34 − x 24 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ x 13 = x 23 x 24 − x 34 , x 23 = x 12 x 14 − x 24 ⎧ � ⎫ � ⎪ ⎪ x ka = x ik x ia − x ja (F2) ⎪ � ⎪ ⎪ ⎪ ⎨ � ⎬ � ( x 12 , · · · , x 45 ) ∈ C 10 F 2 (4 1 ) := � for any Wirtinger triple ( i, j, k ) ⎪ � ⎪ ⎪ ⎪ ⎪ � ⎪ ⎩ ⎭ � a ∈ { 1 , · · · , 4 } ( x aa = 2) So F 2 (4 1 ) is parametrized by x 13 and x 13 = x 13 ( x 2 13 − 2) − ( x 2 x 13 = x 14 x 24 − x 12 13 − 2) ( x 13 − 2)( x 2 13 + x 13 − 1) = 0 � � √ 2 , − 1 ± 5 Hence we get F 2 (4 1 ) = = S 0 (4 1 ) . 2 13

  19. ✓ ✏ ⎧ 3 2 x 123 = 0, x 124 = 0 ⎪ ⎪ ⎨ x 134 = 0, x 234 = 0 ⎪ ⎪ ⎩ (F3) becomes trivial ! 1 4 ✒ ✑ Indeed, we can check this like... b EX. j k j k x ijk = sl b ( x ijk ) = = i i j k = = − x i x ij − x i = 0 i 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend