on the complexity of computing real radicals of
play

On the Complexity of Computing Real Radicals of Polynomial Systems - PowerPoint PPT Presentation

On the Complexity of Computing Real Radicals of Polynomial Systems Mohab Safey El Din 1 Zhi-Hong Yang 2 Lihong Zhi 2 1 Sorbonne Universit e, CNRS , INRIA , Laboratoire dInformatique de Paris 6, LIP6 , Equipe PolSys 2 Key Lab of Mathematics


  1. On the Complexity of Computing Real Radicals of Polynomial Systems Mohab Safey El Din 1 Zhi-Hong Yang 2 Lihong Zhi 2 1 Sorbonne Universit´ e, CNRS , INRIA , Laboratoire d’Informatique de Paris 6, LIP6 , ´ Equipe PolSys 2 Key Lab of Mathematics Mechanization, Academy of Mathematics and Systems Science, CAS, China ISSAC’18, New York, July 16-19

  2. Motivation Polynomial system solving over the reals: f = ( f 1 , . . . , f s ) ⊂ Q [ X 1 , . . . , X n ] V R ( f ) = { x ∈ R n | f 1 ( x ) = 0 , . . . , f s ( x ) = 0 } V V ◮ Numeric computation − → reliability issues, especially in the singular case. � ◮ Algebraic computation − → ( V = V V V C ( f ) ← → � f � ) What if V ∩ R n ⊂ Sing ( V ) ? x 2 1 + x 2 2 = 0 ւ ց • Dimensions are different. • (0 , 0) ∈ V , singular V V V V C ( f ) : lines V V R ( f ) : point • (0 , 0) ∈ V ∩ R n , smooth! � x 1 + ix 2 = 0 x 1 = x 2 = 0 x 1 − ix 2 = 0 2/15 ,

  3. Example 1 [Everett, Lazard, Lazard, Safey El Din, 2007] Vor1 =( α 2 + β 2 + 1) a 2 λ 4 − 2 a (2 aβ 2 + ayβ + aαx − βα + 2 a + 2 aα 2 − βαa 2 ) λ 3 + ( β 2 + 6 a 2 β 2 − 2 βxa 3 − 6 βαa 3 + 6 yβa 2 − 6 aβα − 2 aβx + 6 αxa 2 + y 2 a 2 − 2 aαy + x 2 a 2 − 2 yαa 3 + 6 a 2 α 2 + a 4 α 2 + 4 a 2 ) λ 2 − 2( xa − ya 2 − 2 βa 2 − β + 2 aα + αa 3 )( xa − y − β + aα ) λ + (1 + a 2 )( xa − y − β + aα ) 2 . 3/15 ,

  4. Example 1 [Everett, Lazard, Lazard, Safey El Din, 2007] Vor1 =( α 2 + β 2 + 1) a 2 λ 4 − 2 a (2 aβ 2 + ayβ + aαx − βα + 2 a + 2 aα 2 − βαa 2 ) λ 3 + ( β 2 + 6 a 2 β 2 − 2 βxa 3 − 6 βαa 3 + 6 yβa 2 − 6 aβα − 2 aβx + 6 αxa 2 + y 2 a 2 − 2 aαy + x 2 a 2 − 2 yαa 3 + 6 a 2 α 2 + a 4 α 2 + 4 a 2 ) λ 2 − 2( xa − ya 2 − 2 βa 2 − β + 2 aα + αa 3 )( xa − y − β + aα ) λ + (1 + a 2 )( xa − y − β + aα ) 2 . ◮ Real zeros of Vor1 are union of: � � � aα − ax + β − y = 0 aα + ax − β − y = 0 2 βλ + β + y = 0 λ + 1 = 0 λ = 0 a = 0 3/15 ,

  5. Example 1 [Everett, Lazard, Lazard, Safey El Din, 2007] Vor1 =( α 2 + β 2 + 1) a 2 λ 4 − 2 a (2 aβ 2 + ayβ + aαx − βα + 2 a + 2 aα 2 − βαa 2 ) λ 3 + ( β 2 + 6 a 2 β 2 − 2 βxa 3 − 6 βαa 3 + 6 yβa 2 − 6 aβα − 2 aβx + 6 αxa 2 + y 2 a 2 − 2 aαy + x 2 a 2 − 2 yαa 3 + 6 a 2 α 2 + a 4 α 2 + 4 a 2 ) λ 2 − 2( xa − ya 2 − 2 βa 2 − β + 2 aα + αa 3 )( xa − y − β + aα ) λ + (1 + a 2 )( xa − y − β + aα ) 2 . ◮ Real zeros of Vor1 are union of: � � � aα − ax + β − y = 0 aα + ax − β − y = 0 2 βλ + β + y = 0 λ + 1 = 0 λ = 0 a = 0 ◮ Only one connected component, which is not easy to be seen from Vor1 . 3/15 ,

  6. Problem ◮ f = ( f 1 , . . . , f s ) ⊂ Q [ X 1 , . . . X n ] . � re � f � : the vanishing ideal of V V V R ( f ) . ◮ √ ◮ An ideal I is called real if I = re I . ◮ D = max { deg f i , . . . , deg f s } . Input: f = ( f 1 , . . . , f s ) � Output: irreducible components of re � f � : ◮ generators, or ◮ rational parametrizations. 4/15 ,

  7. Example 1 (Continued) Vor1 =( α 2 + β 2 + 1) a 2 λ 4 − 2 a (2 aβ 2 + ayβ + aαx − βα + 2 a + 2 aα 2 − βαa 2 ) λ 3 + ( β 2 + 6 a 2 β 2 − 2 βxa 3 − 6 βαa 3 + 6 yβa 2 − 6 aβα − 2 aβx + 6 αxa 2 + y 2 a 2 − 2 aαy + x 2 a 2 − 2 yαa 3 + 6 a 2 α 2 + a 4 α 2 + 4 a 2 ) λ 2 − 2( xa − ya 2 − 2 βa 2 − β + 2 aα + αa 3 )( xa − y − β + aα ) λ + (1 + a 2 )( xa − y − β + aα ) 2 . � Irreducible components of � Vor1 � : re P 1 = � aα − ax + β − y, λ + 1 � P 2 = � aα + ax − β − y, λ � P 3 = � 2 βλ + β + y, a � Timing: 9 sec. 5/15 ,

  8. State of the art Exact computation: ◮ Becker, Neuhaus’1993, Neuhaus’1998, Spang’2007 Using Gr¨ obner bases to compute real radicals for arbitrary polynomial ideals. The complexity is D 2 O ( n 2) . Numerical approximations: ◮ Lasserre, Laurent, Rostalski’2008; Lasserre, Laurent, Mourrain, Rostalski, Tr´ ebuchet’2013 Using SDP relaxations to compute zero-dimensional real radical ideals. ◮ Ma, Wang, Zhi’2014 A certificate for computing real radicals using SDP relaxations. ◮ Brake, Hauenstein, Liddell’2016 A method based SDP programming for deciding if an ideal is real. 6/15 ,

  9. Main Results f = ( f 1 , . . . , f s ) ⊂ Q [ X 1 , . . . , X n ] , r = dim � f � , D = max { deg f i } . D 2 O ( n 2) State of the art: Smooth case. A probabilistic algorithm computes generators of irreducible components of � f � using ( snD n ) O (1) operations in Q . � re General case. A probabilistic algorithm computes rational parametrizations of irreducible � f � using s O (1) ( nD ) O ( nr 2 r ) arithmetic operations in Q . � components of re 7/15 ,

  10. Main idea Simple point criterion [Bochnak, Coste, Roy, 1998] � � ∂f i Prime I = � f 1 , . . . , f s � real ⇐ ⇒ ∃ x ∈ V V V R ( I ) s.t. rank ∂X j ( x ) = n − r , where r = dim I . 8/15 ,

  11. Main idea Simple point criterion [Bochnak, Coste, Roy, 1998] � � ∂f i Prime I = � f 1 , . . . , f s � real ⇐ ⇒ ∃ x ∈ V V V R ( I ) s.t. rank ∂X j ( x ) = n − r , where r = dim I . Main idea: prime Yes f = ( f 1 , . . . , f s ) decomposition, P i real? P i real? output P i { P 1 , . . . , P m } No V singular locus of V V C ( f ) 8/15 ,

  12. Singular point Singular point [Cox, Little, O’Shea, 1992] V ⊂ C n , p ∈ V , I I I ( V ) = � f 1 , . . . , f s � . The tangent space of V at p is s � n � ∂f j x ∈ C n � � � T p ( V ) = ∂X i ( p ) x i = 0 . � � j =1 i =1 dim p V = max { dim V i | p ∈ V i irreducible component of V } . ◮ Smooth Point: dim T p ( V ) = dim p V . ◮ Singular Point: dim T p ( V ) � = dim p V . ◮ Singular locus: Sing ( V ) = { p ∈ V | p is a singular point of V } . ◮ V is smooth if Sing ( V ) = ∅ . 9/15 ,

  13. Smooth case V Input: f = ( f 1 , . . . , f s ) V V C ( f ) smooth sample points S sD O ( n ) Basu, Pollack, Roy, Rouillier, Safey El Din, Yes Output: 1 S = ∅ ? Schost, Bank, Giusti, Heintz No { P 1 , . . . , P m } = irreducible ( snD n ) O (1) (by Chow forms) � components of � f � Jeronimo, Krick, Sabia, Sombra/ Blanco, Jeronimo, Solern´ o Yes V V V R ( P i ) = drop P i (smoothness → evaluation) ∅ ? No Output: all remaining P i 10/15 ,

  14. General case V Drop the smoothness assumption on V = V V C ( f ) . Difficulties: it may happen ◮ V ∩ R n ⊂ Sing ( V ) ; ◮ ... or even worse, in the singular locus of Sing ( V ) ; 11/15 ,

  15. General case V Drop the smoothness assumption on V = V V C ( f ) . Difficulties: it may happen ◮ V ∩ R n ⊂ Sing ( V ) ; ◮ ... or even worse, in the singular locus of Sing ( V ) ; Standard idea: lazy representations for equidimensional components of V . ◮ equations and inequations. ◮ Triangular set decompositions (Wu, Lazard, etc.) or rational parametrizations (Giusti, Heintz, Morais, Pardo, etc.) 11/15 ,

  16. Rational parametrization An r -equidimensional variety V ⊂ C n is the Zariski closure of the projection of the following set to X = ( X 1 , . . . , X n ) : ∂w ( T ) = v i ( T ) , ∂w ( T ) w ( T ) = 0 , X i � = 0 ∂T r +1 ∂T r +1 where T = ( T 1 , . . . , T r +1 ) , i = 1 , . . . , n . A rational parametrization of V : ◮ ℓ = ( λ 1 , . . . , λ r +1 ) , generic linear combinations of X 1 , . . . , X n ◮ polynomials w, v 1 , . . . , v n ∈ Q [ T ] . Denote R = (( w, v 1 , . . . , v n ) , ℓ ) . 12/15 ,

  17. General case snD nrO (1) Lecerf Input: f = ( f 1 , . . . , f s ) R 1 , . . . , R t Yes ( nD ) O ( n 2 r ) Output: (1) R i = (1) ? No Basu, Pollack, Roy, Rouillier, No ∂w i R i , R i real? δ O ( r ) Safey El Din, ∂T ri +1 Schost, Bank, Giusti, Heintz Yes save R i clean up Output: all remaining R i 13/15 ,

  18. Implementation Combing: ◮ SINGULAR: operating ideals [Greuel, Pfister]. ◮ Maple: computing sample points RAGlib [Safey El Din] (uses FGb [Faug` ere] for computing Gr¨ obner bases). 14/15 ,

  19. Implementation Combing: ◮ SINGULAR: operating ideals [Greuel, Pfister]. ◮ Maple: computing sample points RAGlib [Safey El Din] (uses FGb [Faug` ere] for computing Gr¨ obner bases). Examples beyond the reach of the SINGULAR library realrad [Spang]. ◮ (Homotopy-1) 7 variables, degree 7. [Chen, Davenport, May, Moreno Maza, Xia, Xiao] f 1 = x 3 y 2 + c 1 x 3 y + y 2 + c 2 x + c 3 , f 2 = c 4 x 4 y 2 − x 2 y + y + c 5 , f 3 = c 4 − 1 . Timimg: 1 sec. ◮ (Essential variety) 9 variables, degree 3 [Fløystad, Kileel, Ottaviani] M ∈ R 3 × 3 | det( M ) = 0 , 2( MM T ) M − tr( MM T ) M = 0 E = � � Timing: 800 sec. 14/15 ,

  20. Thank you! 15/15 ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend