on bregman voronoi diagrams
play

On Bregman Voronoi Diagrams Jean-Daniel Boissonnat 2 Richard Nock 3 - PowerPoint PPT Presentation

On Bregman Voronoi Diagrams Jean-Daniel Boissonnat 2 Richard Nock 3 Frank Nielsen 1 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 INRIA Sophia-Antipolis Geometrica


  1. On Bregman Voronoi Diagrams Jean-Daniel Boissonnat 2 Richard Nock 3 Frank Nielsen 1 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 INRIA Sophia-Antipolis Geometrica Jean-Daniel.Boissonnat@sophia.inria.fr 3 University of Antilles-Guyanne CEREGMIA Richard.Nock@martinique.univ-ag.fr July 2006 — January 2007 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  2. Ordinary Voronoi Diagrams • Voronoi diagram Vor ( S ) s.t. p 4 = { x ∈ R d | || p i x || ≤ || p j x || ∀ p j ∈ S} Vor ( p i ) def p 5 p 1 p 7 • Voronoi sites (static view). p 6 p 6 Vor( p 6 ) • Voronoi generators (dynamic view). p 3 p 2 → Ren´ e Descartes, 17th century. → Partition the Euclidean space E d wrt �� d i = 1 x 2 the Euclidean distance || x || 2 = i . F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  3. Generalizing Voronoi Diagrams Voronoi diagrams widely studied in comp. geometry [AK’00]: Manhattan (taxi-cab) diagram ( L 1 norm): || x || 1 = � d i = 1 | x i | , Affine diagram (power distance): || x − c i || 2 − r 2 i , � Anisotropic diagram (quad. dist.): ( x − c i ) T Q i ( x − c i ) , Apollonius diagram (circle distance): || x − c i || − r i , M¨ obius diagram (weighted distance): λ i || x − c i || − µ i , Abstract Voronoi diagrams [Klein’89], etc. Taxi-cab diagram Power diagram Anisotropic diagram Apollonius diagram F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  4. Non-Euclidean Voronoi diagrams Hyperbolic Voronoi: Poincar´ e disk [B+’96], Poincar´ e half-plane [OT’96], etc. Kullback-Leibler divergence (statistical Voronoi diagrams) [OI’96] & [S+’98] Divergence between two statistical distributions x p ( x ) log p ( x ) � KL ( p || q ) = q ( x ) d x [relative entropy] Riemannian Voronoi diagrams: geodesic length (aka geodesic Voronoi diagrams) [LL ’00] Hyperbolic Voronoi (Poincar´ e) Hyperbolic Voronoi (Klein) Riemannian Voronoi F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  5. Bregman divergences F a strictly convex and differentiable function defined over a convex set domain X D F ( p , q ) = F ( p ) − F ( q ) − � p − q , ∇ F ( q ) � not a distance (not necessarily symmetric nor does triangle inequality hold) F D F ( p , q ) H q x q p F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  6. Example: The squared Euclidean distance F ( x ) = x 2 : strictly convex and differentiable over R d (Multivariate F ( x ) = P d i = 1 x 2 i ) D F ( p , q ) = F ( p ) − F ( q ) − � p − q , ∇ F ( q ) � p 2 − q 2 − � p − q , 2 q � = � p − q � 2 = Voronoi diagram equivalence classes Since Vor ( S ; d 2 ) = Vor ( S ; d 2 2 ) , the ordinary Voronoi diagram is interpreted as a Bregman Voronoi diagram. (Any strictly monotone function f of d 2 yields the same ordinary Voronoi diagram: Vor ( S ; d 2 ) = Vor ( S ; f ( d 2 )) .) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  7. Bregman divergences for probability distributions � F ( p ) = p ( x ) log p ( x ) d x (Shannon entropy) (Discrete distributions F ( p ) = P x p ( x ) log p ( x ) d x ) � D F ( p , q ) = ( p ( x ) log p ( x ) − q ( x ) log q ( x ) −� p ( x ) − q ( x ) , log q ( x ) + 1 � )) d x p ( x ) log p ( x ) � = q ( x ) d x ( KL divergence ) Kullback-Leiber divergence also known as: relative entropy or I -divergence. (Defined either on the probability simplex or extended on the full positive quadrant.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  8. Bregman divergences: A versatile measure Bregman divergences are versatile , suited to mixed type data. (Build multivariate divergences dimensionwise using elementary univariate divergences.) Fact (Linearity) Bregman divergence is a linear operator: ∀ F 1 ∈ C ∀ F 2 ∈ C D F 1 + λ F 2 ( p || q ) = D F 1 ( p || q ) + λ D F 2 ( p || q ) for any λ ≥ 0 . Fact (Equivalence classes) Let G ( x ) = F ( x ) + � a , x � + b be another strictly convex and differentiable function, with a ∈ R d and b ∈ R . Then D F ( p || q ) = D G ( p || q ) . ( For Voronoi diagrams, relax the classes to any monotone function of D F : relative vs absolute divergence.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  9. Bregman divergences for sound processing F ( p ) = − � x log p ( x ) d x (Burg entropy) x ( p ( x ) q ( x ) − log p ( x ) � D F ( p , q ) = q ( x ) − 1 ) d x (Itakura-Saito) Convexity & Bregman balls D F ( p || q ) is convex in its first argument p but not necessarily in its second argument q . ball ′ ( c , r ) = { x | D F ( c , x ) ≤ r } ball ( c , r ) = { x | D F ( x , c ) ≤ r } Superposition of I.-S. balls F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  10. Dual divergence Convex conjugate Unique convex conjugate function G ( = F ∗ ) obtained by the Legendre transformation: G ( y ) = sup x ∈X {� y , x � − F ( x ) } . ∇ G ( y ) = ∇ ( � y , x � − F ( x )) = 0 → y = ∇ F ( x ) . (thus we have x = ∇ F − 1 ( y ) ) D F ( p || q ) = F ( p ) − F ( q ) − � p − q , q ′ � with ( q ′ = ∇ F ( q ) ). F ∗ ( = G ) is a Bregman generator function such that ( F ∗ ) ∗ = F . Dual Bregman divergence D F ( p || q ) = F ( p ) + F ∗ ( q ′ ) − � p , q ′ � = D F ∗ ( q ′ || p ′ ) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  11. Convex conjugate and Dual Bregman divergence Legendre transformation: F ∗ ( x ′ ) = − F ( x ) + � x , x ′ � . X f = ∇ F Y = X ′ x 2 y 2 = x ′ D F ( x 1 , x 2 ) 2 x 1 D F ∗ ( x ′ 2 , x ′ 1 ) y 1 = x ′ 1 F g = ∇ F − 1 G = F ∗ F ( x 1 ) − F ( x 2 ) − � x 1 − x 2 , x ′ D F ( x 1 , x 2 ) = 2 � − F ∗ ( x ′ 1 ) + � x 1 , x ′ 1 � + F ∗ ( x ′ 2 ) − � x 1 , x ′ = 2 � D F ∗ ( x ′ 2 , x ′ = 1 ) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  12. Examples of dual divergences Exponential loss ← → unnormalized Shannon entropy. → G ( y ) = y log y − y = F ∗ ( x ′ ) . F ( x ) = exp ( x ) ← F ( x ) = exp x D F ( x 1 || x 2 ) = exp x 1 − exp x 2 − ( x 1 − x 2 ) exp x 2 f ( x ) = exp x = y D G ( y 1 || y 2 ) = y 1 log y 1 G ( y ) = y log y − y y 2 + y 2 − y 1 g ( y ) = log y = x Logistic loss ← → Bernouilli-like entropy. F ( x ) = x log x + ( 1 − x ) log ( 1 − x ) ← → G ( y ) = log ( 1 + exp ( y )) D F ( x 1 || x 2 ) = log 1 + exp x 1 exp x 2 exp x F ( x ) = log ( 1 + exp x ) 1 + exp x 2 − ( x 1 − x 2 ) f ( x ) = 1 + exp x = y 1 + exp x 2 D G ( y 1 || y 2 ) = y 1 log y 1 y 2 + ( 1 − y 1 ) log 1 − y 1 y y G ( y ) = y log 1 − y + log ( 1 − y ) g ( y ) = log 1 − y = x 1 − y 2 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  13. Bregman (Dual) divergences Dual divergences have gradient entries swapped in the table: (Because of equivalence classes, it is sufficient to have f = Θ( g ) .) Dom. Function F Gradient Inv. grad. Divergence (or dual G = F ∗ ) ( f = g − 1 ) ( g = f − 1 ) X D F ( p , q ) Squared function ⋆ Squared loss (norm) R x 2 x ( p − q ) 2 2 x 2 R + Unnorm. Shannon entropy Kullback-Leibler div. (I-div.) p log p x log x − x log x exp ( x ) q − p + q Exponential Exponential loss R exp x exp x log x exp ( p ) − ( p − q + 1 ) exp ( q ) R + ∗ Burg entropy ⋆ Itakura-Saito divergence p q − log p − 1 − 1 − log x q − 1 x x [ 0 , 1 ] Bit entropy Logistic loss exp x p log p q + ( 1 − p ) log 1 − p x x log x + ( 1 − x ) log ( 1 − x ) log 1 − x 1 + exp x 1 − q Dual bit entropy Dual logistic loss exp x log 1 + exp p exp q x R log ( 1 + exp x ) log 1 + exp q − ( p − q ) 1 + exp x 1 − x 1 + exp q [ − 1 , 1 ] Hellinger ⋆ Hellinger 1 − pq ♣ x x ♣ − 1 − x 2 1 − q 2 − 1 − p 2 q q q 1 − x 2 1 + x 2 − 1 .) (Self-dual divergences are marked with an asterisk ⋆ . Note that f = ∇ F and g = ∇ F F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  14. Self-dual Bregman divergences: Legendre duals Legendre duality: Consider functions and domains: ( F , X ) ↔ ( F ∗ , X ∗ ) Squared Euclidean distance: 2 � x , x � is self-dual on X = X ∗ = R d . F ( x ) = 1 Itakura-Saito divergence. F ( x ) = − � log x i . Domains are X = R + ∗ and X ∗ = R − ∗ ( G = F ∗ = − log ( − x ) ) q − 1 = q ′ p ′ − log q ′ ( D F ( p || q ) = p q − log p p ′ − 1 = D F ( q ′ || p ′ ) with q ′ = − 1 q and p ′ = − 1 p ) It can be difficult to compute for a given F its convex conjugate: ∇ F − 1 � (eg, F ( x ) = x log x ; Liouville’s non exp-log functions). F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend