numerical and experimental investigation of trailing edge
play

Numerical and Experimental Investigation of Trailing Edge - PowerPoint PPT Presentation

Numerical and Experimental Investigation of Trailing Edge Modifications of Centrifugal Wastewater Pump Impellers Oliver Litfin a Antonio Delgado a Kais Haddad b Horst Klein b a University of Erlangen-Nuremberg, Institute of Fluid Mechanics b


  1. Numerical and Experimental Investigation of Trailing Edge Modifications of Centrifugal Wastewater Pump Impellers Oliver Litfin a Antonio Delgado a Kais Haddad b Horst Klein b a University of Erlangen-Nuremberg, Institute of Fluid Mechanics b Sulzer Pump Solutions Germany GmbH ASME 2017 Fluids Engineering Division Summer Meeting, July 31 - August 3, 2017, Waikoloa, Hawai’i, USA E r l a n g e n

  2. Scope of the work E r l a n g e n

  3. E r l a n g e n Scope of this work In classical textbooks (Guelich, Karassik) it is stated, that under-filing typically leads to an increase of 3 percent in head while pump efficiency stays constant or increases slightly by 0.5 to 1 percent. More recent publications (Wu et al. 2015, Gao et al. 2016) showed significant increase in pump efficiency for a mixed-flow and a low-speed centrifugal pump due to trailing edge modifications. In this work the effect of trailing edge modifications on the performance of the wastewater pump impellers is numerically investigated. ⇒ Can under-filing increase the efficiency of a wastewater pump impeller? ⇒ How can under-filing increase the hydraulic efficiency? ⇒ What are the main mechanisms involved? Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 3

  4. Description of the test pumps E r l a n g e n

  5. E r l a n g e n Wastewater pumps NS065 and NS100 Property NS065 NS100 D 2 0.38 m 0.48 m D 1 t / D 2 0.47 0.53 b 2 / D 2 0.25 0.26 β 2 b @camber 29.0 degree 18.4 degree s θ 2 / D 2 0.06 0.12 N s (US units) 1780 2730 default (cut-off) straight-cut under-filed (incl. blunt portion) Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 5

  6. E r l a n g e n Numerical model � CFX � 17.1) • 3D RANS (ANSYS R R • Impeller only in rotating frame • No tip-gap, no backchannel • k - ω -SST turbulence model with curvature correction • 1st to 2nd order upwind blending scheme with β = 0.95 • Unstructured mesh with 2.8 million nodes (tetra and prism elements) • Average y+ ≈ 0.5 • Convergence criteria 10 -5 for rms residuals of the mass and momentum equations Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 6

  7. E r l a n g e n Dimensionless characteristics for both impellers (CFD) NS065 NS100 0.18 1.05 0.14 1.05 0.16 1 0.12 1 0.14 0.95 0.1 0.95 0.12 0.9 0.08 0.9 η * η * Ψ Ψ 0.1 0.85 0.06 0.85 NS065 Ψ NS100 Ψ NS065 η * NS100 η * 0.08 0.8 0.04 0.8 NS065SC Ψ NS100SC Ψ NS065SC η * NS100SC η * NS065UF Ψ NS100UF Ψ 0.06 0.75 0.02 0.75 NS065UF η * NS100UF η * 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 0.04 Φ Φ 2 ) ; Ψ = ( g · H ) / ( ω · D 2 ) 2 ; η ∗ = η/η max , ref • Φ = Q / ( ω · D 3 • Both trailing edge modifications increase the head coefficient • Under-filing leads to an increased efficiency for the NS100 impeller, for the NS065 impeller efficiency is the same as with default trailing edge Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 7

  8. Loss analysis based on rothalpy E r l a n g e n

  9. E r l a n g e n Concept of rothalpy and stations for evaluation Outlet h T = h + 0 . 5 · C 2 − U · C θ 2b 2b 2 TE 2 p T = p + 0 . 5 · ρ · C 2 − ρ · U · C θ 2a 2a PA 1 p T = p 0 − ρ · U · C θ 0 LE 1b 1a • If rothalpy is constant along a streamline (isentropic) → rise in stagnation pressure must correspond to the change in angular momentum. • Impeller was divided in three sections by defining a couple of stations in the flowpath • Leading edge section (LE), passage section (PA) and trailing edge section (TE) • Rothalpy losses were evaluated for the LE, PA and TE section separately Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 9

  10. E r l a n g e n Impeller section rothalpy pressure losses (normalized) NS065 NS100 0 0 -0.005 -0.005 -0.01 dp T / 0.5* ρ *U2 2 dp T / 0.5* ρ *U2 2 -0.01 -0.015 -0.015 -0.02 -0.02 -0.025 NS065, LE NS100, LE -0.025 -0.03 NS065, PA NS100, PA NS065, TE NS100, TE -0.035 -0.03 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 0.04 Φ Φ • For NS065 at BEP ( Φ =0.02) LE and TE losses are almost equal ( ≈ -0.004). PA losses are around -0.01. • For NS100 similar behavior except LE losses → slightly misaligned flow at BEP . Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 10

  11. E r l a n g e n Rothalpy pressure losses at LE for different TE shapes NS065 NS100 0 0 -0.005 -0.01 -0.01 dp T,LE / 0.5* ρ *U2 2 dp T,LE / 0.5* ρ *U2 2 dp T,LE / dp t,is dp T,LE / dp t,is -0.02 -0.015 0 -0.02 0 -0.03 -0.01 -0.01 -0.02 NS065 NS100 -0.02 NS065SC NS100SC -0.03 NS065UF NS100UF -0.04 -0.03 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 0.04 Φ Φ • Normalized rothalpy pressure losses (bottom half) not affected by TE (quite obvious). • Relative rothalpy pressure losses (top half) are affected by TE shape. This is due to the increased work input (higher Ψ -values). Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 11

  12. E r l a n g e n Rothalpy pressure losses at PA for different TE shapes NS065 NS100 0 0 -0.01 -0.03 -0.02 dp T,PA / 0.5* ρ *U2 2 dp T,PA / 0.5* ρ *U2 2 dp T,PA / dp t,is dp T,PA / dp t,is -0.06 -0.03 0 -0.04 -0.01 -0.09 -0.01 -0.02 -0.02 NS065 NS100 NS065SC NS100SC -0.03 -0.03 NS065UF NS100UF -0.04 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 0.04 Φ Φ • For NS065 impeller normalized rothalpy pressure losses are not affected by TE shape. Relative losses are reduced at higher flow coefficients due to the TE modifications. • For NS100 impeller normalized losses are also affected by TE shape. Relative losses are strongly reduced by under-filing at all flow coefficients. Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 12

  13. E r l a n g e n Rothalpy pressure losses at TE for different TE shapes NS065 NS100 0 0 -0.01 -0.03 -0.02 dp T,TE / 0.5* ρ *U2 2 dp T,TE / 0.5* ρ *U2 2 dp T,TE / dp t,is dp T,TE / dp t,is -0.06 -0.03 0 -0.04 0 -0.09 -0.01 -0.02 -0.02 NS065 NS100 -0.04 NS065SC NS100SC -0.03 NS065UF NS100UF -0.04 -0.06 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 0.04 Φ Φ • Normalized losses are strongly increased by straight-cut TE → large mixing losses. Default and under-filed TE are very similar for NS065. For NS100 under-filed TE reduces losses at higher flow coefficients. • For NS100 there is a strong decrease in relative losses for under-filed TE at higher flow coefficients. Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 13

  14. Effect of TE shape on slip factor E r l a n g e n

  15. E r l a n g e n CFD slip factor for different TE shapes NS065 NS100 0.8 0.75 0.75 0.7 0.7 0.65 � CFD � CFD 0.65 0.6 0.6 0.55 NS065 NS100 0.55 NS065SC 0.5 NS100SC NS065UF NS100UF 0.5 0.45 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.015 0.02 0.025 0.03 0.035 0.04 � � • σ CFD = 1 − ∆ C θ 2 with ∆ C θ 2 = C θ 2 , th − C θ 2 U 2 • NS065 σ ≈ 0 . 6 @BEP , NS100 σ ≈ 0 . 55 @BEP • Slip factor increased by TE modifications compared to default TE. Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 15

  16. E r l a n g e n CFD slip factor: Trailing edge flow NS065 0.8 0.75 0.7 � CFD 0.65 0.6 NS065 0.55 NS065SC NS065UF 0.5 0.005 0.01 0.015 0.02 0.025 0.03 0.035 � • Flow deflection towards the circumferential direction for default TE (top). • With both TE modifications the flow detached at the trailing edge end of the pressure side → less flow deflection, increased slip factor. Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 16

  17. Experimental validation E r l a n g e n

  18. E r l a n g e n Experimental results (whole pump) NS065 NS100 0.18 1.1 0.14 1.1 0.17 1 0.13 1 0.16 0.9 0.12 0.9 0.15 0.8 0.11 0.8 0.14 0.7 0.1 0.7 0.13 0.6 0.09 0.6 η * η * Ψ Ψ 0.12 0.5 0.08 0.5 0.11 0.4 0.07 0.4 0.1 0.3 0.06 0.3 NS065 Ψ NS100 Ψ NS065 η * NS100 η * 0.09 0.2 0.05 0.2 NS065UF Ψ NS100UF Ψ 0.08 0.1 0.04 0.1 NS065UF η * NS100UF η * 0.07 0.03 0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 Φ Φ • For NS065 under-filing does increase the head coefficient by 7.7 percent @BEP , while efficiency remains constant. • For NS100 head coefficient @BEP is increased by even 11.7 percent while efficiency is increased by 1.7 percent. The maximum efficiency is even increased by 4.5 percent, shifted to higher flow coefficient. Oliver Litfin a , Antonio Delgado a , Kais Haddad b , Horst Klein b FEDSM 2017 | | FAU | 18

  19. Conclusions E r l a n g e n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend