non decaying solutions to the navier stokes equations in
play

Non decaying solutions to the Navier-Stokes equations in the - PowerPoint PPT Presentation

Non decaying solutions to the Navier-Stokes equations in the half-space Yasunori Maekawa (Kyoto University) Hideyuki Miura (Tokyo Institute of Technology) Christophe Prange (CNRS & Universit e de Bordeaux) Mathflows, Porquerolles


  1. Non decaying solutions to the Navier-Stokes equations in the half-space Yasunori Maekawa (Kyoto University) Hideyuki Miura (Tokyo Institute of Technology) Christophe Prange (CNRS & Universit´ e de Bordeaux) Mathflows, Porquerolles September 5, 2018

  2. Navier-Stokes equations Navier-Stokes equations   ∂ t V + V · ∇ V − ∆ V + ∇ P = 0 , x ∈ Ω , t ∈ (0 , T ) ,  (NS) ∇ · V = 0 , x ∈ Ω , t ∈ [0 , T ) ,   V | t =0 = V 0 , x ∈ Ω . Boundary condition V = 0 on ∂ Ω × (0 , T ) Scaling Ω = R 3 or R 3 + , λ ∈ (0 , ∞ ) , V 0 ,λ ( y ) = λV 0 ( λy ) V λ ( y, s ) = λV ( λy, λ 2 s ) , ∀ y ∈ Ω , s > 0 1 Criticality L 3 ( R 3 ) , ˙ 2 ( R 3 ) scale critical norms H 2 / 27

  3. Navier-Stokes equations Leray-Hopf solutions V is a Leray-Hopf or a finite energy weak solution to (NS) for initial data V 0 ∈ L 2 σ (Ω) if for all T < ∞ , V ∈ L ∞ ((0 , T ); L 2 (Ω)) ∩ L 2 ((0 , T ); H 1 (Ω)) ; V satisfies (NS) in the sense of distributions; V satisfies the global energy inequality for all t ∈ (0 , ∞ ) � � t � � | V ( · , t ) | 2 + 2 |∇ V | 2 ≤ | V 0 | 2 ; Ω 0 Ω Ω we have � V ( · , t ) − V 0 � L 2 (Ω) → 0 , when t → 0 . Regular vs. singular point A point ( x 0 , t 0 ) is a regular point if V is bounded in a parabolic cylinder Q r ( x 0 , t 0 ) for r > 0 , otherwise it is a singular point. 3 / 27

  4. Outline of the talk 1 Motivations 2 Mild solutions and concentration near blow-up 3 Non uniqueness 4 Local energy weak solutions and blow-up of critical norms 4 / 27

  5. Motivation 1: blow-up of critical norms Theorem (Seregin 2012) Let V a Leray-Hopf solution with initial data V 0 ∈ C ∞ c,σ ( R 3 ) . Assume that T > 0 is a blow-up time. Then t → T − . � V ( · , t ) � L 3 ( R 3 ) → ∞ , By contraposition, assume that there exists M ∈ (0 , ∞ ) and t n → T − such that � V ( · , t n ) � L 3 ( R 3 ) ≤ M . Consider � T − t n V n ( y, s ) := λ n V ( λ n y, T + λ 2 n s ) , λ n := . S Then � V n ( · , − S ) � L 3 ≤ M . Remains to see: a priori bounds, convergence to a limit blow-up solution V , V = 0 by backward uniqueness and ε -regularity for smoothness. 5 / 27

  6. Motivation 1: blow-up of critical norms Bounds There exists S ( M ) ∈ (0 , ∞ ) and A ( M ) ∈ (0 , ∞ ) such that � 0 � |∇ V n | 2 dyds ≤ A. x 0 ∈ R 3 � V n ( · , s ) � 2 sup sup L 2 ( B ( x 0 , 1)) + sup x 0 ∈ R 3 s ∈ ( − S, 0) − S B ( x 0 , 1) Convergence V n converges to a V (Blow-up solution) which is a Local Energy Weak Solution (LEWS) to (NS) in R 3 × ( − S, 0) : local energy inequality, weak solution, weak continuity in time, representation formula for the pressure. Strong convergence to initial data: 1 x 0 ∈ R 3 � V ( · , s ) − e ( s + S )∆ V ( · , − S ) � 2 5 . sup L 2 ( B ( x 0 , 1)) ≤ C ( M )( s + S ) At final time V ( · , T ) ∈ L 3 , implies V ( · , 0) = 0 . Liouville Transfer mild decay of V ( · , − S ) ∈ L 3 to V . Implies smoothness of V in R 3 \ B (0 , R ) × ( − S ′ , 0) , S ′ < S and V = 0 by backward uniqueness and unique continuation. 6 / 27

  7. Motivation 2: large forward self-similar solutions 1 t V ( x Forward self-similar V ( x, t ) = t , 1) . √ √ Initial data − 1 homogeneous: for example V 0 ( x ) = ( − x 2 | x | 2 , x 1 | x | 2 , 0) belongs to � L 2 uloc ( R 3 ) := v ∈ L 2 loc : x 0 ∈ R 3 � v � L 2 ( B ( x 0 , 1)) < ∞ sup � x 0 →∞ and � v � L 2 ( B ( x 0 , 1)) − → 0 . Jia, Sverak 2014 For scale-invariant divergence-free V 0 ∈ C ∞ ( R 3 \ { 0 } ) and any scale invariant LEWS V , we have V ( · , 1) ∈ C ∞ and C ( α, V 0 ) | ∂ α ( V ( x, 1) − V 0 ( x )) | ≤ ∀| α | ≥ 0 . (1 + | x | ) 3+ | α | , A priori estimate coming from local in space near initial time regularity result for the LEWS V . 7 / 27

  8. Motivation 3: singular Burgers vortex Moffatt (2000) found blow-up solutions to (NS) which have a similar structure to the regular Burgers vortex:   � T − t U G �� − x 1 T − t x ′ � µ − 1 µ − 1 µ , x ′ = ( x 1 , x 2 ) ⊤ ,   + α V sB ( t, x ) = − x 2 T − t 2 x 3 �� T − t x ′ � Ω sB ( t, x ) = ∇ × V SB ( t, x ) = α µ − 1 µ − 1 T − t G where     0 U G ( X ′ ) = 1 − e − | X ′| 2 − X 2   4   , 0 G ( X ′ ) = X 1   2 π | X ′ | 2 4 π e − | X ′| 2 0 1 4 α ∈ R : circulation at infinity. and µ > 1 : magnitude of the strain Blow-up in backward self-similar form, but out of Cafarelli-Kohn-Nirenberg (1982) or Necas-Ruzicka-Sverak (1997), Tsai (1998). Stability of blow-up solution: Maekawa, Miura, P. 2018. 8 / 27

  9. Linear theory: resolvent estimates Resolvent problem  x ∈ R 3 λU − ∆ U + ∇ P = f , + ,   x ∈ R 3 (R) ∇ · U = 0 , + ,   U | x 3 =0 = 0 . Theorem (Maekawa, Miura, P. 2017) For all ε > 0 , λ ∈ S π − ε , q ∈ (1 , ∞ ) , there exists C ( ε, q ) ∈ (0 , ∞ ) , for all f ∈ L q uloc,σ ( R 3 + ) , there is a unique solution to the Stokes resolvent R →∞ problem with �∇ ′ P � L 1 ( | x ′ | < 1 ,R<x d <R +1) − → 0 and 1 2 �∇ U � L q | λ |� U � L q uloc + | λ | uloc ≤ C � f � L q uloc , � � 1 2 log | λ | �∇ 2 U � L q 1 + e − c | λ | uloc + �∇ P � L q uloc ≤ C � f � L q q � = ∞ . uloc , Desch, Hieber, Pr¨ uss 2001; Abe, Giga, Hieber 2015 9 / 27

  10. Linear theory: proof of the resolvent estimates Main source of inspiration: Desch, Hieber, Pr¨ uss 2001. Decompose U = U D.L. + U nonloc : for all ξ ∈ R 2 , x 3 > 0 , � ∞ 1 ( e − ω λ ( ξ ) | x 3 − z 3 | − e − ω λ ( ξ )( x 3 + z 3 ) ) � � U D.L. ( ξ, x 3 ) = f ( ξ, z 3 ) dz 3 2 ω λ ( ξ ) 0 � ∞ nonloc ( ξ, x 3 ) = − iξ ( e − ω λ ( ξ ) | x 3 − z 3 | − e − ω λ ( ξ )( x 3 + z 3 ) ) e −| ξ | z 3 � � U ′ P 0 ( ξ ) dz 3 2 ω λ ( ξ ) 0 � ∞ | ξ | ( e − ω λ ( ξ ) | x 3 − z 3 | − e − ω λ ( ξ )( x 3 + z 3 ) ) e −| ξ | z 3 � � U nonloc, 3 ( ξ, x 3 ) = P 0 ( ξ ) dz 3 , 2 ω λ ( ξ ) 0 � λ + | ξ | 2 and for ξ � = 0 where ω λ ( ξ ) := � ∞ P 0 ( ξ ) = − ω λ ( ξ ) + | ξ | e − ω λ ( ξ ) z 3 � � f 3 ( ξ, z 3 ) dz 3 . | ξ | 0 Integration by parts: � ∞ U nonloc ( ξ, x 3 ) ≃ 1 λ ( e −| ξ | x 3 − e − ω λ ( ξ ) x 3 ) ξ ⊗ ξ e − ω λ ( ξ ) y 3 � � f ′ ( ξ, y 3 ) dy 3 | ξ | 0 10 / 27

  11. Linear theory: proof of the resolvent estimates Estimates singularity at 0 and decay for kernel � R d − 1 e ix ′ · ξ � e −| ξ | x 3 − e − ω λ ( ξ ) x 3 � s λ ( x ′ , x 3 , z 3 ) := 1 e − ω λ ( ξ ) z 3 ξ ⊗ ξ | ξ | dξ. λ Pointwise estimate There exist c ( ε ) , C ( ε ) ∈ (0 , ∞ ) such that for all λ ∈ S π − ε , x ′ ∈ R 2 , z 3 , x 3 > 0 , 1 e − c | λ | 2 z 3 Cx 3 | s λ | ≤ � �� � ( x 3 + z 3 + | x ′ | ) 2 1 1 2 ( x 3 + z 3 + | x ′ | ) 2 ( x 3 + z 3 ) 1 + | λ | 1 + | λ | 11 / 27

  12. Linear theory: proof of the resolvent estimates � � ∞ s λ ( x ′ − z ′ , x 3 , z 3 ) f ′ ( z ′ , z 3 ) dz 3 dz ′ I ( f ′ )( x ′ , x 3 ) := R 2 0 Convolution estimates in horizontal direction: � � � � � I [ f ′ ]( · , y 3 ) � L p ((0 , 1) 2 ) ≤ + i |≤ 2 , max | α ′ i + β ′ i |≥ 3 , max | α ′ i + β ′ max | α ′ max | α ′ i |≤ 2 i |≤ 2 � � 1 � n +1 � ∞ � � s ′ λ ( · , x 3 , z 3 ) � L s ( α ′ +(0 , 1) 2 ) � f ′ ( · , z 3 ) � L q ( β ′ +(0 , 1) 2 ) dz 3 + 0 n n =1 where 1 2 z 3 Ce − c | λ | � s λ ( · , x 3 , z 3 ) � L s ( R 2 ) ≤ p ) . 2 ( x 3 + z 3 ))( x 3 + z 3 ) 2( 1 q − 1 1 1 2 (1 + | λ | | λ | q = p = 1 excluded, also noticed in Desch, Hieber, Pr¨ uss 2001: � I ( f ′ ) � L 1 , ∞ x 3 ((0 , 1); L 1 ((0 , 1) 2 ) ≤ | λ | − 1 � f ′ � L 1 uloc ( R 2 )) . x 3 ((0 , 1); L 1 12 / 27

  13. Linear theory: semigroup estimates Theorem (Maekawa, Miura, P. 2017) For q ∈ (1 , ∞ ) , let A the Stokes operator in L q uloc,σ ( R 3 + ) . Then − A generates a bounded analytic semigroup in L q uloc,σ ( R 3 + ) . Moreover, for 1 ≤ q < p ≤ ∞ or 1 < q = p ≤ ∞ , there is C ( d, p, q ) ∈ (0 , ∞ ) , � � p ) + 1 uloc ≤ Ct − | α | t − 3 2 ( 1 q − 1 �∇ α e − t A f � L p � f � L q uloc , t ∈ (0 , ∞ ) , | α | ≤ 1 , 2 Abe, Giga 2013, 2014 (compactness method) Solonnikov 2003, Maremonti, Starita 2003 (Green tensor) 13 / 27

  14. Mild solutions: bilinear estimates For θ ∈ (0 , 2) , 2 − θ P ∇· ( U ⊗ V ) = ∂ α ( U β V γ )+( − ∆ ′ ) 2 G θ, ≥| λ | 2 ( U ⊗ V ) + G ≤| λ | 2 ( U ⊗ V ) 1 1 For 1 ≤ q < p ≤ ∞ or 1 < q = p ≤ ∞ and 0 ≤ 1 q − 1 p < 1 3 � � � p ) � � � 2 ( 1 3 q − 1 ≤ C | λ | − 1 − θ � G θ, ≥| λ | 2 ( U ⊗ V ) � 1 + | λ | � U ⊗ V � L q uloc , 2 1 L p � � uloc � � 1 2 � U ⊗ V � L q � G ≤| λ | 2 ( U ⊗ V ) � ≤ C | λ | uloc . 1 L q uloc Estimates for Oseen’s kernel Let 1 < q ≤ p ≤ ∞ or 1 ≤ q < p ≤ ∞ . Then for | α | ≤ 1 and for all t ∈ (0 , ∞ ) , 2 � � t − 3 2 ( 1 q − 1 p ) + 1 uloc ≤ Ct − 1+ α �∇ α e − t A P ∇ · ( U ⊗ V ) � L p � U ⊗ V � L q uloc , 2 � � uloc ≤ Ct − 1 �∇ e − t A P ∇ · ( U ⊗ V ) � L q � U · ∇ V � L q uloc + � V · ∇ U � L q . uloc 14 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend