non convex relaxations for rank regularization
play

Non-Convex Relaxations for Rank Regularization Carl Olsson - PowerPoint PPT Presentation

Non-Convex Relaxations for Rank Regularization Carl Olsson 2019-05-01 Carl Olsson 2019-05-01 1 / 40 Structure from Motion and Factorization W X X Affine camera model: P 1 P 2 X = X 1 X 2 . . . .


  1. Non-Convex Relaxations for Rank Regularization Carl Olsson 2019-05-01 Carl Olsson 2019-05-01 1 / 40

  2. Structure from Motion and Factorization W ⊙ X X Affine camera model:   P 1 � � P 2   X = X 1 X 2 . . .   . . � �� � . 3D points � �� � camera matrices Carl Olsson 2019-05-01 2 / 40

  3. General Motion/Deformation . . . Linear shape basis assumption:                             0 . 1581 0 . 4714 − 0 . 9782 2 . 0509 1 . 8610 − 2 . 4750     − 0 . 0366 − 0 . 0468 0 . 2511 0 . 0532 0 . 2687 0 . 5076     = 0 . 5402 − 1 . 9804 0 . 4749 − 0 . 4343 2 . 0293 0 . 3569         . . . . . .   . . . . . .   . . . . . .                       . . . Carl Olsson 2019-05-01 3 / 40

  4. Rank and Factorization   . . . c 11 c 21 c 12 c 21 . . .   � � � �   X = . . . = . . .  . x 1 x 2 x n b 1 b 2 b r . . ...  . .  . . � �� �  B ( m × r ) . . . c 1 r c 21 � �� � C T ( r × n ) rank( X ) = r Factorization not unique: X = BC T = BG G − 1 C T . ���� � �� � ˜ ˜ C T B DOF: ( m + n ) r − r 2 << mn Can reconstruct at most mn − (( m + n ) r − r 2 ) missing elements. Small DOF desirable! Incorporate as many constraints as possible. Carl Olsson 2019-05-01 4 / 40

  5. Structure from Motion Rigid reconstruction: Non-rigid version: Carl Olsson 2019-05-01 5 / 40

  6. Low Rank Approximation Find the best rank r 0 approximation of X 0 : � X − X 0 � 2 min F rank( X )= r 0 Eckart, Young (1936): Closed form solution via SVD: If X 0 = � n then X = � r 0 i =1 σ i ( X 0 ) u i v T i =1 σ i ( X 0 ) u i v T i . i Alternative formulation: X µ rank( X ) + � X − X 0 � 2 min F Eckart, Young: � σ i ( X 0 ) if σ i ( X 0 ) ≥ √ µ σ i ( X ) = 0 otherwise Carl Olsson 2019-05-01 6 / 40

  7. Low Rank Approximation Generalizations: min g (rank( X )) + �A X − b � 2 + C ( X ) No closed form solution. Non-convex. Discontinuous. Even local optimization can be difficult. Goal: Find ”flexible, easy to optimize” relaxations. Carl Olsson 2019-05-01 7 / 40

  8. The Nuclear Norm Approach Recht, Fazel, Parillo 2008. Replace rank( X ) with � X � ∗ = � n i =1 σ i ( X ). X µ � X � ∗ + �A X − b � 2 min Convex. Can be solved optimally. Shrinking bias. Not good for SfM! Closed form solution to min X µ � X � ∗ + � X − X 0 � 2 F : � σ i ( X 0 ) − µ � If X 0 = � n then X = � n i =1 σ i ( X 0 ) u i v T u i v T i =1 max 2 , 0 i . i � �� � soft thresholding Carl Olsson 2019-05-01 8 / 40

  9. Just a few prior works Low rank recovery via Nuclear Norm: Fazel, Hindi, Boyd. A rank minimization heuristic with application to minimum order system approximation. 2001. Cand` es, Recht. Exact matrix completion via convex optimization. 2009. Cand` es, Li, Ma, Wright. Robust principal component analysis? 2011. Non-convex approaches: Mohan, Fazel. Iterative reweighted least squares for matrix rank minimization. 2010. Pinghua, Zhang, Lu, Huang, Ye. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. 2013. Sparse signal recovery using the ℓ 1 norm: Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. 2006. Cand` es, Romberg, Tao. Stable signal recovery from incomplete and inaccurate measurements. 2006. Cand` es, Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? 2006. Non-Convex approaches: Candes, Wakin, Boyd. Enhancing sparsity by reweighted ℓ 1 minimization. 2008. Carl Olsson 2019-05-01 9 / 40

  10. Our Approach i µ − max ( √ µ − σ i ( X ) , 0) 2 . Replace µ rank( X ) with R µ ( σ ( X )) = � X R µ ( X ) + �A X − b � 2 min R µ continuous, but non-convex. The global minimizer does not change if �A� < 1. R µ ( σ ( X )) + �A X − b � 2 lower bound on µ rank( X ) + �A X − b � 2 . f ∗∗ µ ( X ) = R µ ( σ ( X )) + � X − X 0 � 2 F is the convex envelope of f µ ( X ) = µ rank( X ) + � X − X 0 � 2 F . Larsson, Olsson. Convex Low Rank Regularization. IJCV 2016. Carl Olsson 2019-05-01 10 / 40

  11. Shrinking Bias 1D versions: i µ − [ √ µ − σ i ( X )] 2 rank( X ) = � i | σ i ( X ) | 0 � X � ∗ = � i σ i ( X ) R µ ( σ ( X )) = � + Singular value thresholding: 2 √ µ � X � ∗ + � X − X 0 � 2 µ rank( X ) + � X − X 0 � 2 R µ ( σ ( X )) + � X − X 0 � 2 F F F Carl Olsson 2019-05-01 11 / 40

  12. More General Framework Computation of the convex envelopes f ∗∗ g ( X ) = R g ( σ ( X )) + � X − X 0 � 2 F of f g ( X ) = g (rank( X )) + � X − X 0 � 2 F where g ( k ) = � k i =1 g i and 0 ≤ g 1 ≤ g 2 ≤ ... . And proximal operators . Another special case: f r 0 ( X ) = I (rank( X ) ≤ r 0 ) + � X − X 0 � 2 F Larsson, Olsson. Convex Low Rank Regularization. IJCV 2016. Carl Olsson 2019-05-01 12 / 40

  13. Results General Case If f g ( X ) = g (rank( X )) + � X − X 0 � 2 F then � n � � � � f ∗∗ g i , σ 2 − � σ ( Z ) − σ ( X ) � 2 + � X − X 0 � 2 g ( X ) = max min i ( Z ) F . σ ( Z ) i =1 The maximization over Z reduces to a 1D-search. (piece-wise quadratic concave objective function) Can be done in O ( n ) time ( n =number of singular values). Carl Olsson 2019-05-01 13 / 40

  14. Convexity of f ∗∗ µ 2 µ 2 µ √ µ √ µ � √ µ − σ � √ µ − σ � 2 � 2 + + ( σ − σ 0 ) 2 for σ 0 = 0 , 1 , 2 + + σ 2 µ − µ − If σ 0 = 2 the function will not try to make σ = 0! Carl Olsson 2019-05-01 14 / 40

  15. Interpretations: f ∗∗ r 0 f r 0 ( X ) = I (rank( X ) ≤ r 0 ) + � X − X 0 � 2 F Level set surfaces { X | R r 0 ( X ) = α } for X = diag( x 1 , x 2 , x 3 ) with r 0 = 1 ( Left ) and r 0 = 2 ( Middle ). Note that when r 0 = 1 the regularizer promotes solutions where only one of x k is non-zero. For r 0 = 2 the regularlizer instead favors solutions with two non-zero x k . For comparison we also include the level set of the nuclear norm. Carl Olsson 2019-05-01 15 / 40

  16. Hankel Matrix Estimation Signal Hankel Matrix Matrix+Noise H ∈H I (rank( H ) ≤ r 0 ) + � H − X 0 � 2 min F SVD Mean 40 f ∗∗ µ f ∗∗ r 0 Nuclear norm 30 � H − H ( f ) � 1 Mean f ∗∗ 20 µ f ∗∗ r 0 Nuclear norm 0 . 9 10 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 0 . 8 noise σ 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 Carl Olsson 2019-05-01 16 / 40

  17. Smooth Linear Shape Basis f N ( S ) = � S − S 0 � 2 F + µ � P ( S ) � ∗ + τ TV( S ) f R ( S ) = � S − S 0 � 2 F + R µ ( P ( S )) + τ TV( S ) 160 R µ Nuclear norm � S − S GT � F 140 120 100 0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09 0 . 10 noise σ Carl Olsson 2019-05-01 17 / 40

  18. RIP problems Linear observations: b = A X 0 + ǫ , A : R m × n → R p , X 0 low rank, ǫ noise. Recover X 0 using rank-penalties/constraints R µ ( σ ( X )) + �A X − b � 2 R r 0 ( σ ( X )) + �A X − b � 2 or Restricted Isometry Property (RIP): F ≤ �A X � 2 ≤ (1 + δ q ) � X � 2 (1 − δ q ) � X � 2 F , rank( X ) ≤ q Olsson, Carlsson, Andersson, Larsson. Non-Convex Rank/Sparsity Regularization and Local Minima. ICCV 2017. Olsson, Carlsson, Bylow. A Non-Convex Relaxation for Fixed-Rank Approximation. RSL-CV 2017. Carl Olsson 2019-05-01 18 / 40

  19. Near Convex Rank/Sparsity Estimation Intuition: If RIP holds then �A X � 2 behaves like � X � 2 F . R µ ( σ ( X )) + � X − X 0 � 2 F ≈ R µ ( σ ( X )) + � X � 2 F − 2 � X , X 0 � is convex. What about R µ ( σ ( X )) + �A X − b � 2 ≈ R µ ( σ ( X )) + �A X � 2 − 2 � X , A ∗ b � ? Near convex? 1D-example: R µ ( x ) + ( 1 2 x − b ) 2 ( µ = 1) √ √ 1 b = 0 b = b = 1 b = 2 b = 1 . 5 √ 2 Carl Olsson 2019-05-01 19 / 40

  20. Main Result (Rank Penalty) Def. F µ ( X ) := R µ ( σ ( X )) + �A X − b � 2 Z := ( I − A ∗ A ) X s + A ∗ b X s stationary point of F µ ( X ) ⇔ R µ ( σ ( X )) + � X − Z � 2 X s ∈ arg min F . X F local approximation of �A X − b � 2 around X s . � X − Z � 2 X s obtained by thresholding SVD of Z . Theorem If X s is a stationary point of F µ , and the singular values of Z fulfill √ µ ∈ [(1 − δ r ) √ µ, 1 − δ r ] . then for any another stationary point X ′ σ i ( Z ) / s we have rank ( X ′ s − X s ) > r. Carl Olsson 2019-05-01 20 / 40

  21. Main Result (Rank Constraint) Def. F r 0 ( X ) := R r 0 ( σ ( X )) + �A X − b � 2 Z := ( I − A ∗ A ) X s + A ∗ b X s stationary point of F r 0 ( X ) ⇔ R r 0 ( σ ( X )) + � X − Z � 2 X s ∈ arg min F . X F local approximation of �A X − b � 2 around X s . � X − Z � 2 X s obtained by thresholding SVD of Z . Theorem If X s is a stationary point of F r 0 with rank( X s ) = r 0 , and the singular values of Z fulfill σ r 0 +1 ( Z ) < (1 − 2 δ 2 r 0 ) σ r 0 ( Z ) then any other stationary point X ′ s has rank( X ′ s ) > r 0 . Carl Olsson 2019-05-01 21 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend