new hardness results for diophantine approximation
play

New Hardness Results for Diophantine Approximation Friedrich - PowerPoint PPT Presentation

New Hardness Results for Diophantine Approximation Friedrich Eisenbrand & Thomas Rothvo Institute of Mathematics EPFL, Lausanne APPROX09 Simultaneous Diophantine Approximation (SDA) Given: 1 , . . . , n Q bound N


  1. New Hardness Results for Diophantine Approximation Friedrich Eisenbrand & Thomas Rothvoß Institute of Mathematics EPFL, Lausanne APPROX’09

  2. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n

  3. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε

  4. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ Yes, if N ≥ (1 /ε ) n [Dirichlet]

  5. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ Yes, if N ≥ (1 /ε ) n [Dirichlet] ◮ NP -hard [Lagarias ’85]

  6. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ Yes, if N ≥ (1 /ε ) n [Dirichlet] ◮ NP -hard [Lagarias ’85] ◮ 2 O ( n ) -approximation via LLL-algo [Lagarias ’85]

  7. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ Yes, if N ≥ (1 /ε ) n [Dirichlet] ◮ NP -hard [Lagarias ’85] ◮ 2 O ( n ) -approximation via LLL-algo [Lagarias ’85] ◮ Gap version NP -hard [R¨ ossner & Seifert ’96, Chen & Meng ’07]

  8. Inapproximability Theorem (R¨ ossner & Seifert ’96, Chen & Meng ’07) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε O (1) O (1) ◮ ∄ Q ∈ { 1 , . . . , n log log n N } : max log log n ε i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ n

  9. Inapproximability Theorem (R¨ ossner & Seifert ’96, Chen & Meng ’07) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε O (1) O (1) ◮ ∄ Q ∈ { 1 , . . . , n log log n N } : max log log n ε i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ n Theorem Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε O (1) ◮ ∄ Q ∈ { 1 , . . . , 2 n · N } : max log log n · ε i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ n even if ε small .

  10. Reduction SDA → DDA Theorem (Directed Diophantine Approximation (DDA)) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ ε O (1) i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ 2 n · ε ◮ ∄ Q ∈ { 1 , . . . , n log log n · N } : max even if ε small.

  11. Reduction SDA → DDA Theorem (Directed Diophantine Approximation (DDA)) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ ε O (1) i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ 2 n · ε ◮ ∄ Q ∈ { 1 , . . . , n log log n · N } : max even if ε small. ◮ Given SDA instance α 1 , . . . , α n , ε, N , choose δ := 2 ε N α ′ := α i − δ ∀ i = 1 , . . . , n i α ′ := − ( α i + δ ) ∀ i = 1 , . . . , n i + n ε ′ := 3 ε

  12. Reduction SDA → DDA Theorem (Directed Diophantine Approximation (DDA)) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ ε O (1) i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ 2 n · ε ◮ ∄ Q ∈ { 1 , . . . , n log log n · N } : max even if ε small. ◮ Given SDA instance α 1 , . . . , α n , ε, N , choose δ := 2 ε N α ′ := α i − δ ∀ i = 1 , . . . , n i α ′ := − ( α i + δ ) ∀ i = 1 , . . . , n i + n ε ′ := 3 ε ◮ Note that |⌈− x ⌉ − ( − x ) | = |⌊ x ⌋ − x |

  13. Reduction SDA → DDA Theorem (Directed Diophantine Approximation (DDA)) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ ε O (1) i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ 2 n · ε ◮ ∄ Q ∈ { 1 , . . . , n log log n · N } : max even if ε small. ◮ Given SDA instance α 1 , . . . , α n , ε, N , choose δ := 2 ε N α ′ := α i − δ ∀ i = 1 , . . . , n i α ′ := − ( α i + δ ) ∀ i = 1 , . . . , n i + n ε ′ := 3 ε ◮ Note that |⌈− x ⌉ − ( − x ) | = |⌊ x ⌋ − x | ◮ Assume ε < 1 6 · ( 1 2 ) n

  14. Proof: SDA-YES ⇒ DDA-YES ◮ Let Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε . Z Qα i ≤ ε

  15. Proof: SDA-YES ⇒ DDA-YES ◮ Let Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε . Q · ( α i − δ ) Z Qα i Q · ( α i + δ ) ≤ ε Qδ ∈ [ ε, 2 ε ] Qδ ∈ [ ε, 2 ε ]

  16. Proof: SDA-YES ⇒ DDA-YES ◮ Let Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε . round down round up Q · ( α i − δ ) Z Qα i Q · ( α i + δ ) ≤ ε Qδ ∈ [ ε, 2 ε ] Qδ ∈ [ ε, 2 ε ]

  17. Proof: SDA-YES ⇒ DDA-YES ◮ Let Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε . round down round up Q · ( α i − δ ) Z Qα i Q · ( α i + δ ) ≤ ε Qδ ∈ [ ε, 2 ε ] Qδ ∈ [ ε, 2 ε ] ◮ Conclusion: Q is DDA solution � |⌈ Q ( α i − δ ) ⌉ − Q ( α i − δ ) | , � j =1 ,..., 2 n : |⌈ Qα ′ j ⌉− Qα ′ max j | = max ≤ 3 ε | Q ( α i + δ ) − ⌊ Q ( α i + δ ) ⌋| i =1 ,...,n

  18. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO

  19. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO 1 ◮ Let Q ≤ n O ( log log n ) N with j ) ≤ 2 n · 3 ε < 1 / 2 j =1 ,..., 2 n ( ⌈ Qα ′ j ⌉ − Qα ′ max

  20. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO 1 ◮ Let Q ≤ n O ( log log n ) N with j ) ≤ 2 n · 3 ε < 1 / 2 j =1 ,..., 2 n ( ⌈ Qα ′ j ⌉ − Qα ′ max ◮ Suppose ∄ integer in [ Q ( α i − δ ) , Q ( α i + δ )] ∈ Z ∈ Z Q · ( α i − δ ) Q · ( α i + δ )

  21. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO 1 ◮ Let Q ≤ n O ( log log n ) N with j ) ≤ 2 n · 3 ε < 1 / 2 j =1 ,..., 2 n ( ⌈ Qα ′ j ⌉ − Qα ′ max ◮ Suppose ∄ integer in [ Q ( α i − δ ) , Q ( α i + δ )] round up round down ∈ Z ∈ Z Q · ( α i − δ ) Q · ( α i + δ )

  22. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO 1 ◮ Let Q ≤ n O ( log log n ) N with j ) ≤ 2 n · 3 ε < 1 / 2 j =1 ,..., 2 n ( ⌈ Qα ′ j ⌉ − Qα ′ max ◮ Suppose ∄ integer in [ Q ( α i − δ ) , Q ( α i + δ )] round up round down ∈ Z ∈ Z Q · ( α i − δ ) Q · ( α i + δ ) j =1 ,..., 2 n |⌈ Qα ′ j ⌉ − Qα ′ max j | ≥ 1 / 2 Contradiction! ◮

  23. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO 1 ◮ Let Q ≤ n O ( log log n ) N with j ) ≤ 2 n · 3 ε < 1 / 2 j =1 ,..., 2 n ( ⌈ Qα ′ j ⌉ − Qα ′ max ◮ Suppose ∄ integer in [ Q ( α i − δ ) , Q ( α i + δ )] ∈ Z Q · ( α i − δ ) Q · ( α i + δ ) j =1 ,..., 2 n |⌈ Qα ′ j ⌉ − Qα ′ max j | ≥ 1 / 2 Contradiction! ◮

  24. Proof: SDA-NO ⇒ DDA-NO ◮ Show: ¬ DDA-NO ⇒ ¬ SDA-NO 1 ◮ Let Q ≤ n O ( log log n ) N with j ) ≤ 2 n · 3 ε < 1 / 2 j =1 ,..., 2 n ( ⌈ Qα ′ j ⌉ − Qα ′ max ◮ Suppose ∄ integer in [ Q ( α i − δ ) , Q ( α i + δ )] ∈ Z Q · ( α i − δ ) Qα i Q · ( α i + δ ) ≤ Qδ j =1 ,..., 2 n |⌈ Qα ′ j ⌉ − Qα ′ max j | ≥ 1 / 2 Contradiction! ◮ log log n ) · ε hence ¬ SDA-NO 1 ◮ | Qα i − Z | ≤ Qδ ≤ n O (

  25. Mixing Set min c s s + c T y s + a i y i ≥ b i ∀ i = 1 , . . . , n R ≥ 0 s ∈ Z n y ∈

  26. Mixing Set min c s s + c T y s + a i y i ≥ b i ∀ i = 1 , . . . , n R ≥ 0 s ∈ Z n y ∈ ◮ Poly-time if a i = 1 [G¨ unl¨ uk & Pochet ’01, Miller & Wolsey ’03]

  27. Mixing Set min c s s + c T y s + a i y i ≥ b i ∀ i = 1 , . . . , n R ≥ 0 s ∈ Z n y ∈ ◮ Poly-time if a i = 1 [G¨ unl¨ uk & Pochet ’01, Miller & Wolsey ’03] ◮ Poly-time if a 1 | a 2 | . . . | a n [Zhao & de Farias ’08, Conforti et al. ’08]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend