neutrino and dark matter physics with
play

Neutrino and Dark Matter Physics with Quenching factor Integral - PowerPoint PPT Presentation

OUTLINE e N Coherent . . . e spectrum . . . Neutrino and Dark Matter Physics with Quenching factor Integral Spectrum an Ultra-Low-Energy Germanium Detector ULE-HPGe detector Calibration data Background . . . Low Energy Noise


  1. OUTLINE ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Neutrino and Dark Matter Physics with Quenching factor Integral Spectrum an Ultra-Low-Energy Germanium Detector ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary NSYSU, Kaohsiung 2005 Feb 1 � � � � � � � � �

  2. OUTLINE OUTLINE ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor ν e N Coherent Scattering ¯ ◮ Integral Spectrum ULE-HPGe detector ◮ LEGe Prototype Measurements with Sources Calibration data Background . . . ◮ Background Level at Exp. Site Low Energy Noise Plan : . . . ◮ Plan : Quenching Factor Measurement Dark . . . WIMP . . . ◮ Plan : Dark Matter Feasibility Studies Plan : . . . Future Plan ◮ Future Plans Summary ◮ Summary � � � � � � � � �

  3. OUTLINE ν e N Coherent Scattering ¯ ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Differential cross-section Quenching factor ν e e − → ¯ ν e e − scattering : ¯ Integral Spectrum [( g V − g A ) 2 + ( g V + g A ) 2 (1 − T E ν ) 2 + ( g 2 ULE-HPGe detector 2 m e ◮ ( dσ dt ) SM = G F V ) m e T A − g 2 ν ] 2 π E 2 Calibration data Background . . . dt ) MM = πα 2 µ 2 ◮ ( dσ e ( 1 1 T − E ν ) ν m 2 Low Energy Noise Plan : . . . Dark . . . ν e N → ¯ ¯ ν e N scattering : WIMP . . . 2 m N dt ) SM = G F [ Z (1 − 4 sin 2 θ W ) − N ] 2 [1 − M N T N ◮ ( dσ ν ] Plan : . . . 2 E 2 4 π → N 2 enhancement Future Plan Summary dt ) MM = πα 2 µ 2 ◮ ( dσ e Z 2 ( 1 1 T − E ν ) ν m 2 [ A. C. Dodd, et. al. Phys. Lett. B 266 434] 2 2 E ν ◮ Low recoil energy : T max = M N +2 E ν ( ∼ 1.9 keV for E ν = 8 MeV, Ge) � � � � � � � � �

  4. OUTLINE ν e spectrum and Recoil e − , N Spectrum ¯ ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary � � � � � � � � �

  5. OUTLINE Quenching factor ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor = 0.25, ∆ E E ∼ 0.05 Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary At quenching factor = 0.25 : ∼ 0.05 count day − 1 keV − 1 at ∼ 140 eV. P1 data with HPGe : 0.05 count day − 1 keV − 1 below 10 keV for 5g. � � � � � � � � �

  6. OUTLINE Integral Spectrum ν e N Coherent . . . ¯ ν e spectrum . . . ¯ For quenching factor = 1.0, 0.25, 0.5 Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary If threshold ∼ 100 eV → 0.055 count day − 1 (for 5 g, 11 count day − 1 for 1 kg) Signal to noise ratio in this energy range ∼ 2.2 � � � � � � � � �

  7. OUTLINE ULE-HPGe detector ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . ULE-HPGe target mass : 5 g Dark . . . WIMP . . . Plan : . . . Future Plan Summary shielding 4 π coverage ULE-HPGe with anti-compton � � � � � � � � �

  8. OUTLINE Calibration data ν e N Coherent . . . ¯ ν e spectrum . . . Source : 55 Fe (5.9 keV, 6.49 keV) and Ti (4.51 keV, 4.93 keV) : ¯ Quenching factor Integral Spectrum Extrapolate energy calibration ULE-HPGe detector to low energy Calibration data Background . . . → threshold ∼ 60 eV. Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary Noise and signal are well seperater � � � � � � � � �

  9. OUTLINE Background with ULE-HPGe ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Compare period I HPGe data with ULE-HPGe : Quenching factor Integral Spectrum After scale to mass, ULE-HPGe data ULE-HPGe detector is 1 order larger then period I data, Calibration data with or without veto cut. Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary Even the cosmic trigger event rate is 1 order different. → scale with surface? → need further simulation to clarify. � � � � � � � � �

  10. OUTLINE Low Energy Noise ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Peak at 100 eV → probably noise. Summary → a better PSD analysis is need. � � � � � � � � �

  11. OUTLINE Plan : Quenching Factor Measurement ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Last Quenching Factor Measuremen of Ge is 30 years ago. Summary Quenching Factor by using neutron beam at Institute of Atomic Energy, Beijing(CIAE). � � � � � � � � �

  12. OUTLINE Dark Matter(WIMP) Experiment ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise WIMP detection : Plan : . . . Dark . . . ◮ passible mass range 1 GeV - 1 TeV. WIMP . . . Plan : . . . ◮ Typical nuclei recoil energy 0 - 100 keV. Future Plan ◮ expected background rate ∼ 1 cpd, or less. Summary Rate per recoil energy : = ρσ 0 | F ( q ) | 2 dR f ( � υ, t ) � d 3 υ. υ> √ 2 m W µ 2 dE r υ M N E r / 2 µ 2 � � � � � � � � �

  13. OUTLINE WIMP detection with ULE-HPGe ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . WIMP . . . Plan : . . . Future Plan Summary Low threshold → sensitive to low mass region. � � � � � � � � �

  14. OUTLINE Plan : Background Measurement at Y2L ν e N Coherent . . . ¯ ν e spectrum . . . ¯ Quenching factor Integral Spectrum ULE-HPGe detector Calibration data Background . . . Low Energy Noise Plan : . . . Dark . . . Background measurement at Yang Yang Underground Lab(South Korea), WIMP . . . supported by KIM group. Plan : . . . Future Plan ◮ with 5 g ULE-HPGe Summary ◮ 700 m of rock. ◮ Cosmic-rays level → 5 order less. � � � � � � � � �

  15. OUTLINE Future Plan ν e N Coherent . . . ¯ ν e spectrum . . . ¯ ◮ Quenching factor measurement at CIAE. Quenching factor Integral Spectrum ◮ Background measurement at Y2L. ULE-HPGe detector Calibration data ◮ Install 4 × 5 g array ULE-HPGe at power plant. Background . . . ◮ Understand the background level Low Energy Noise → simulation and PSD studies Plan : . . . Dark . . . ◮ Background and threshold studies with a 10 g ULE-HPGe. WIMP . . . ◮ Calibration at < keV, e − source generate X-rays from C, O. Plan : . . . Future Plan Summary � � � � � � � � �

  16. OUTLINE Summary ν e N Coherent . . . ¯ ν e spectrum . . . ¯ ◮ explore potentials on ¯ ν e N coherent scattering Quenching factor → open window on low mass WIMP studies. Integral Spectrum ULE-HPGe detector ◮ preliminary result : Calibration data Background . . . → threshold ∼ 60eV - 120eV could be achieved Low Energy Noise → background level is 10 × of period I when scale by mass. Plan : . . . → trying to understand high background rate. Dark . . . WIMP . . . ◮ plans : Plan : . . . → prototype study on multi-array 4 × 5 g detector on site Future Plan → background level study on 10 g detector Summary → quenching factor with neutron beam exp at CIAE → background measurement at Y2L ◮ target : 1 kg multi-array ULE-HPGe detector → Dark Matter experiment → ¯ ν e N coherent scattering experiment � � � � � � � � �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend