nearly efficient algorithms
play

(Nearly) Efficient Algorithms for the Graph Matching Problem - PowerPoint PPT Presentation

(Nearly) Efficient Algorithms for the Graph Matching Problem Tselil Schramm (Harvard/MIT) with Boaz Barak, Chi-Ning Chou, Zhixian Lei & Yueqi Sheng (Harvard) graph matching problem (approximate graph isomorphism) input: two graphs on


  1. (Nearly) Efficient Algorithms for the Graph Matching Problem Tselil Schramm (Harvard/MIT) with Boaz Barak, Chi-Ning Chou, Zhixian Lei & Yueqi Sheng (Harvard)

  2. graph matching problem (approximate graph isomorphism) input: two graphs on π‘œ vertices goal: find permutation of vertices that maximizes # shared edges ma𝑦 𝐡 𝐻 0 , 𝜌 𝐡 𝐻 1 𝜌 𝐻 1 𝐻 0

  3. graph matching problem (approximate graph isomorphism) input: two graphs on π‘œ vertices goal: find permutation of vertices that maximizes # shared edges ma𝑦 𝐡 𝐻 0 , 𝜌 𝐡 𝐻 1 𝜌 # matched = 4 𝐻 1 𝐻 0

  4. graph matching problem (approximate graph isomorphism) input: two graphs on π‘œ vertices goal: find permutation of vertices that maximizes # shared edges ma𝑦 𝐡 𝐻 0 , 𝜌 𝐡 𝐻 1 𝜌 𝐻 1 𝐻 0

  5. graph matching problem (approximate graph isomorphism) input: two graphs on π‘œ vertices goal: find permutation of vertices that maximizes # shared edges ma𝑦 𝐡 𝐻 0 , 𝜌 𝐡 𝐻 1 𝜌 # matched = 5 𝐻 1 𝐻 0

  6. computationally hard (of course) NP-hard: reduction from quadratic assignment problem (non-simple graphs). [ Lawler’63] also: reduction from sparse random 3-SAT to approximate version [ O’Donnell -Wright-Wu- Zhou’14]

  7. practitioners: undeterred ο‚– computational biology [e.g. Singh-Xu- Bergerβ€˜08] ο‚– de-anonymization [e.g. Narayanan- Shmatikov’09] ο‚– social networks [e.g. Korula- Lattanzi’14] ο‚– image alignment [e.g. Cho- Lee’12] ο‚– machine learning [e.g. Cour-Srinivasan- Shi’07] ο‚– pattern recognition, e.g. β€œthirty years of graph matching in pattern recognition” [Conte-Foggia-Sansone- Vento’04 ]

  8. β€œrobust average - case graph isomorphism” average case: correlated random graphs structured model sample 𝐻 ∼ 𝐻(π‘œ, π‘ž) 𝐻 β‰ˆ π‘žπ›Ώ 2 β‹… π‘œ 𝛿 𝛿 ma𝑦 𝐡 𝐻 0 , 𝜌 𝐡 𝐻 1 2 𝜌 subsample edges w/prob 𝛿 𝐻 0 𝐻 1 avg. degree π‘žπ›Ώ β‹… π‘œ random permutation 𝜌 [e.g. Pedarsani- Grossglauser’11, 𝐻 0 Lyzinski-Fishkind- Priebe’14, Korula- Lattanzi’14]

  9. β€œrobust average - case graph isomorphism” average case: correlated random graphs structured model β€œnull” model sample 𝐻 ∼ 𝐻(π‘œ, π‘ž) 𝐻 𝛿 𝛿 subsample edges w/prob 𝛿 𝐻 0 𝐻 1 avg. degree π‘žπ›Ώ β‹… π‘œ 𝜌 β‰ˆ π‘žπ›Ώ 2 β‹… π‘œ 𝐻 0 2

  10. β€œrobust average - case graph isomorphism” average case: correlated random graphs structured model β€œnull” model sample sample 𝐻 0 , 𝐻 1 ∼ 𝐻(π‘œ, π‘žπ›Ώ) 𝐻 ∼ 𝐻(π‘œ, π‘ž) 𝐻 𝛿 𝛿 subsample edges w/prob 𝛿 𝐻 1 𝐻 0 𝐻 0 𝐻 1 avg. degree π‘žπ›Ώ β‹… π‘œ avg. degree π‘žπ›Ώ β‹… π‘œ 𝜌 β‰ˆ π‘žπ›Ώ 2 β‹… π‘œ β‰ˆ π‘žπ›Ώ 2 β‹… π‘œ ma𝑦 𝐡 𝐻 0 , 𝜌 𝐡 𝐻 1 𝐻 0 2 𝜌 2

  11. information theoretic limit 𝐻(π‘œ, π‘ž) 𝐻 𝛿 𝛿 for which π‘ž, 𝛿 can we recover 𝜌 ? 𝐻 0 𝐻 1 𝜌 𝐻 0 Theorem [Cullina- Kivayash’16&17] Iff π‘žπ›Ώ 2 > log π‘œ π‘œ , with high probability 𝜌 is the unique maximizing permutation.

  12. algorithms for robust average case? average-case graph isomorphism algorithms fail. e.g. matching local neighborhoods match radius- 𝑙 neighborhoods? 𝐻 1 𝐻 0

  13. algorithms for robust average case? average-case graph isomorphism algorithms fail. e.g. matching local neighborhoods 𝛿 𝛿 match radius- 𝑙 neighborhoods? 𝐻 1 𝐻 0

  14. algorithms for robust average case? average-case graph isomorphism algorithms fail. e.g. spectral algorithm 𝑀 max 𝑀 max unique entries in top eigenvector give isomorphism? 𝐻 1 𝐻 0

  15. algorithms for robust average case? average-case graph isomorphism algorithms fail. e.g. spectral algorithm 𝛿 𝛿 𝛿 𝛿 𝑀 max 𝑀 max + + unique entries in top eigenvector give isomorphism? 𝐻 1 𝐻 0 perturb eigenvectors by β‰ˆ 𝛿

  16. actual algorithms for robust average case?

  17. starting from a seed 𝜌ȁ 𝑇 known 𝑇 𝜌(𝑇) 𝐻 0 𝐻 1

  18. starting from a seed match vertices with similar adjacency into 𝑇 𝑀 𝑣 𝐻 1 𝐻 0 𝑇

  19. starting from a seed match vertices with similar adjacency into 𝑇 𝜌 𝑣 = 𝑀 𝐻 1 𝐻 0 𝑇 iff seed β‰₯ Ξ©(π‘œ πœ— ) , the seeded algorithm approximately recovers 𝜌 . [Yartseva- Grossglauser’13] 𝑃 π‘œ πœ— time to guess a seed. need 2 ΰ·¨

  20. 𝐻(π‘œ, π‘ž) structured 𝐻 our results 𝛿 𝛿 𝐻 0 𝐻 1 𝜌 Theorem 𝐻 0 1 2 π‘œ 𝑝(1) π‘œ 1βˆ’πœ— π‘œ 153 π‘œ 3 and 𝛿 = Ξ©(1) ,* there is a π‘œ 𝑃(log π‘œ) For any πœ— > 0 , if π‘ž ∈ , βˆͺ π‘œ , π‘œ π‘œ π‘œ time algorithm that recovers 𝜌 on π‘œ βˆ’ 𝑝(π‘œ) of the vertices w/prob β‰₯ 0.99 . 1 *we allow 𝛿 = Ξ© loglog π‘œ π‘œ 1/2 π‘œ 𝑝(1) π‘œ 1/153 π‘œ 2/3 π‘œ 1βˆ’πœ— 𝐻(π‘œ, π‘ž) log π‘œ π‘œ average degrees: π‘œ 3/5 π‘œ 1/3

  21. 𝐻(π‘œ, π‘ž) structured 𝐻 our results 𝛿 𝛿 𝐻 0 𝐻 1 𝜌 Theorem 𝐻 0 1 2 π‘œ 𝑝(1) π‘œ 1βˆ’πœ— π‘œ 153 π‘œ 3 and 𝛿 = Ξ©(1) ,* there is a π‘œ 𝑃(log π‘œ) For any πœ— > 0 , if π‘ž ∈ , βˆͺ π‘œ , π‘œ π‘œ π‘œ time algorithm that recovers 𝜌 on π‘œ βˆ’ 𝑝(π‘œ) of the vertices w/prob β‰₯ 0.99 . 1 *we allow 𝛿 β‰₯ log 𝑝(1) π‘œ Theorem 𝐻(π‘œ, π‘žπ›Ώ) hypothesis testing If π‘ž, 𝛿 are as above then there is a poly(π‘œ) time distinguishing null algorithm for the structured vs null distributions. 𝐻 0 𝐻 1

  22. our approach: small subgraphs hypothesis testing: correlation of subgraph counts recovery: match rare subgraphs seedless algorithms!

  23. outline ο‚– distinguishing/hypothesis testing ο‚– recovery ο‚– concluding

  24. outline ο‚– distinguishing/hypothesis testing ο‚– recovery ο‚– concluding

  25. distinguishing/hypothesis testing structured 𝐻(π‘œ, π‘ž) 𝐻 Given 𝐻 0 , 𝐻 1 sampled equally likely from structured or null , 𝛿 𝛿 decide w/prob 1 βˆ’ 𝑝(1) from which. 𝐻 0 𝐻 1 ? ? 𝜌 𝐻 0 𝐻 1 𝐻 0 ? 𝐻(π‘œ, π‘žπ›Ώ) null brute force: is there a 𝜌 with β‰₯ π‘žπ›Ώ 2 π‘œ 2 matched edges? 𝐻 0 𝐻 1

  26. …counting triangles? structured 𝐻(π‘œ, π‘ž) 𝑑𝑝𝑠 𝐿 3 𝐻 0 , 𝐻 1 : = # 𝐿 3 π‘—π‘œ 𝐻 0 # K 3 π‘—π‘œ 𝐻 1 . 𝐻 𝛿 𝛿 𝐻 0 𝐻 1 ? ? 𝜌 𝐻 0 𝐻 1 𝐻 0 ? 𝐻(π‘œ, π‘žπ›Ώ) null 𝐻 0 𝐻 1

  27. …counting triangles? structured 𝐻(π‘œ, π‘ž) 𝑑𝑝𝑠 𝐿 3 𝐻 0 , 𝐻 1 : = # 𝐿 3 π‘—π‘œ 𝐻 0 # K 3 π‘—π‘œ 𝐻 1 . 𝐻 𝛿 𝛿 𝐻 0 𝐻 1 𝜌 𝐻 0 𝐻 1 𝐻 0 𝐻(π‘œ, π‘žπ›Ώ) null triangle counts in 𝐻 0 , 𝐻 1 are independent 𝐻 0 𝐻 1 𝑙 3 (𝐻 0 , 𝐻 1 ) β‰ˆ π‘žπ›Ώπ‘œ 6 𝔽 𝑑𝑝𝑠

  28. …counting triangles? structured 𝐻(π‘œ, π‘ž) 𝐿 3 (𝐻 0 , 𝐻 1 ) β‰ˆ π‘žπ›Ώπ‘œ 6 + 𝛿 2 π‘žπ‘œ 3 𝔽 𝑑𝑝𝑠 𝐻 𝛿 𝛿 triangle counts in 𝐻 0 , 𝐻 1 are correlated 𝐻 0 𝐻 1 𝜌 𝐻 0 𝐻 1 𝐻 0 𝐻(π‘œ, π‘žπ›Ώ) null 𝐻 0 𝐻 1

  29. …counting triangles? structured 𝐻(π‘œ, π‘ž) 𝐻 𝛿 𝛿 structured 𝐿 3 (𝐻 0 , 𝐻 1 ) β‰ˆ π‘žπ›Ώπ‘œ 6 + 𝛿 2 π‘žπ‘œ 3 𝔽 𝑑𝑝𝑠 𝐻 0 𝐻 1 𝜌 null 𝐿 3 (𝐻 0 , 𝐻 1 ) β‰ˆ π‘žπ›Ώπ‘œ 6 𝔽 𝑑𝑝𝑠 𝐻 0 Variance? 𝐻(π‘œ, π‘žπ›Ώ) null Optimistically, in null case, 1/2 β‰ˆ π‘žπ›Ώπ‘œ 3 π•Ž 𝑑𝑝𝑠 𝐿 3 𝐻 0 , 𝐻 1 𝐻 0 𝐻 1

  30. β€œindependent trials” π‘ˆ 𝑑𝑝𝑠 π‘ˆ 𝐻 0 , 𝐻 1 = 1 (𝑗) (𝐻 0 , 𝐻 1 ) π‘ˆ ෍ 𝑑𝑝𝑠 Suppose we had π‘ˆ β€œindependent trials”: 𝐿 3 𝑗=1 𝐻(π‘œ, π‘ž) 𝐻 𝛿 structured 𝛿 𝐻 0 𝐻 1 β‰ˆ π‘žπ›Ώπ‘œ 6 + 𝛿 2 π‘žπ‘œ 3 𝔽 𝑑𝑝𝑠 π‘ˆ 𝐻 0 , 𝐻 1 𝜌 𝐻 0 if π‘ˆ > 1/𝛿 6 , β‰ˆ π‘žπ›Ώπ‘œ 6 𝔽 𝑑𝑝𝑠 π‘ˆ 𝐻 0 , 𝐻 1 𝐻(π‘œ, π‘žπ›Ώ) 𝑑𝑝𝑠 π‘ˆ is a good test null 1/2 β‰ˆ 1 π‘žπ›Ώπ‘œ 3 π•Ž 𝑑𝑝𝑠 π‘ˆ 𝐻 0 , 𝐻 1 𝐻 0 𝐻 1 π‘ˆ

  31. near-independent subgraphs β€œindependent trials” π‘ˆ 𝑑𝑝𝑠 π‘ˆ 𝐻 0 , 𝐻 1 = 1 Suppose we had π‘ˆ β€œindependent” subgraphs : π‘ˆ ෍ 𝑑𝑝𝑠 𝐼 𝑗 (𝐻 0 , 𝐻 1 ) 𝑗=1 𝐼 1 , … , 𝐼 π‘ˆ what properties must 𝐼 1 , … , 𝐼 π‘ˆ have to be β€œindependent”?

  32. surprisingly delicate (concentration) π‘ž = π‘œ βˆ’5/7 𝐻(π‘œ, π‘ž) 𝐻 𝐼 How many labeled copies of 𝐼 in 𝐻 ? ȁ𝑏𝑣𝑒 𝐼 ȁ β‹… π‘œ 5! 5 β‹… π‘ž 7 β‰ˆ π‘œ 5 π‘ž 7 = Θ(1) 𝔽 # 𝐼 𝐻 =

  33. surprisingly delicate (concentration) π‘ž = π‘œ βˆ’5/7 𝐻(π‘œ, π‘ž) 𝐻 𝐼 # 𝐼 (𝐻) does not concentrate! How many labeled copies of 𝐼 in 𝐻 ? ȁ𝑏𝑣𝑒 𝐼 ȁ β‹… π‘œ 5! 5 β‹… π‘ž 7 β‰ˆ π‘œ 5 π‘ž 7 = Θ(1) 𝔽 # 𝐼 𝐻 = How many labeled copies of 𝐿 4 in 𝐻 ? ȁ𝑏𝑣𝑒 𝐿 4 ȁ β‹… π‘œ 4! 4 β‹… π‘ž 6 β‰ˆ π‘œ 4 π‘ž 6 = Θ(π‘œ βˆ’2/7 ) 𝔽 # 𝐿 4 𝐻 =

  34. variance of subgraph counts 𝐻(π‘œ, π‘ž) 𝐻 𝐼 Lemma For a constant-sized subgraph 𝐼 , 2 𝔽 # 𝐼 𝐻 π•Ž # 𝐼 (𝐻) = Θ 1 β‹… min πΎβŠ‚πΌ 𝔽[# 𝐾 𝐻 ] subgraph of 𝐼 with fewest expected appearances

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend