n onlinear hyperbolic pde
play

N ONLINEAR HYPERBOLIC PDE : C OUPLING TECHNIQUES USING DIFFUSION - PowerPoint PPT Presentation

N ONLINEAR HYPERBOLIC PDE : C OUPLING TECHNIQUES USING DIFFUSION MECHANISMS Benjamin B OUTIN IRMAR, Universit Rennes 1, France Journes EDP Normandie Rouen, October 25th-26th, 2011 O UTLINE Position of the problem 1 Geometrical framework


  1. N ONLINEAR HYPERBOLIC PDE : C OUPLING TECHNIQUES USING DIFFUSION MECHANISMS Benjamin B OUTIN IRMAR, Université Rennes 1, France Journées EDP Normandie Rouen, October 25th-26th, 2011

  2. O UTLINE Position of the problem 1 Geometrical framework for the state coupling 2 Weak form of boundary conditions Existence result Thin interface regime 3 Reformulation of the problem D AFERMOS regularization Interfacial layers of R IEMANN -D AFERMOS solutions 4 Thick interface regime Theoretical results Numerical observations B. Boutin Coupling techniques. . . 25/10/11 2/22

  3. O UTLINE Position of the problem 1 Geometrical framework for the state coupling 2 Weak form of boundary conditions Existence result Thin interface regime 3 Reformulation of the problem D AFERMOS regularization Interfacial layers of R IEMANN -D AFERMOS solutions 4 Thick interface regime Theoretical results Numerical observations B. Boutin Coupling techniques. . . 25/10/11 2/22

  4. C ONTEXT OF THE STUDY Enceinte de confinement N EPTUNE project Vapeur d’eau Pressuriseur Cuve Barres de contrˆ ole Turbine Vapeur G´ en´ erateur de vapeur Alternateur (´ echangeur de chaleur) Caloporteur Tour de chaud refroidissement (330 ◦ C) Condenseur Pompe ou rivi` ere ou mer Cœur Liquide Circuit de refroidissement Caloporteur Pompe froid (280 ◦ C) Pompe PhD Thesis (27/11/09) Other collaborators : CEA Saclay and University Paris 6 A. A MBROSO , F. C OQUEL , C. C HALONS , E. G ODLEWSKI , under the supervision of P. G. L E F LOCH F. L AGOUTIÈRE , P. A. R AVIART , N. S EGUIN B. Boutin Coupling techniques. . . 25/10/11 3/22

  5. P RACTICAL MOTIVATIONS Code coupling : Aims : information • mathematically well-posed • numerically solvable Code A Code B • physically satisfactory space Fixed interface x = 0 Possible information to transmit Example : Two Euler systems with distinct EOS Conservation of some physical quantities   ∂ t ρ + ∂ x ( ρ v ) = 0 ,    Continuity of relevant variables   ∂ t ( ρ v ) + ∂ x ( ρ v 2 + p ± ) = 0 ,     Knowledge of steady states   ∂ t ( ρ e ) + ∂ x ( ρ ve + p ± v ) = 0 . B. Boutin Coupling techniques. . . 25/10/11 4/22

  6. P RACTICAL MOTIVATIONS Code coupling : Aims : information • mathematically well-posed • numerically solvable Code A Code B • physically satisfactory space Fixed interface x = 0 Possible information to transmit Example : Two Euler systems with distinct EOS Conservation of some physical quantities   ∂ t ρ + ∂ x ( ρ v ) = 0 ,    Continuity of relevant variables   ∂ t ( ρ v ) + ∂ x ( ρ v 2 + p ± ) = 0 ,     Knowledge of steady states   ∂ t ( ρ e ) + ∂ x ( ρ ve + p ± v ) = 0 . B. Boutin Coupling techniques. . . 25/10/11 4/22

  7. C ONSERVATIVE VS . NON - CONSERVATIVE COUPLING Two strictly hyperbolic PDE problems :   ∂ t u + ∂ x f − ( u ) = 0 , x < 0 , t > 0 ,   u ( x , t ) ∈ R N , x ∈ R .    ∂ t u + ∂ x f + ( u ) = 0 , x > 0 , t > 0 , Flux coupling A UDUSSE , P ERTHAME , S EGUIN , V OVELLE , T OWERS , K ARLSEN , R ISEBRO f − ( u ( 0 − , t )) = f + ( u ( 0 + , t )) , t > 0 . Rankine-Hugoniot jump relation Convenient entropy condition at the interface (Discontinuous flux conservative coupling) State coupling G ODLEWSKI , R AVIART u ( 0 − , t ) = u ( 0 + , t ) , t > 0 . No physical entropy criterion at the interface or more generally ( ⇒ study of the microscopical dynamic) θ − ( u ( 0 − , t )) = θ + ( u ( 0 + , t )) , t > 0 . θ ± change of variable. (Non-conservative coupling) Difficulty : Both frameworks are usually inconciliable ! Example (cont.) : ( A MBROSO et al. 2005 ) conservation of ρ E and preservation of steady states p , v = cst are not conciliable. B. Boutin Coupling techniques. . . 25/10/11 5/22

  8. C ONSERVATIVE VS . NON - CONSERVATIVE COUPLING Two strictly hyperbolic PDE problems :   ∂ t u + ∂ x f − ( u ) = 0 , x < 0 , t > 0 ,   u ( x , t ) ∈ R N , x ∈ R .    ∂ t u + ∂ x f + ( u ) = 0 , x > 0 , t > 0 , Flux coupling A UDUSSE , P ERTHAME , S EGUIN , V OVELLE , T OWERS , K ARLSEN , R ISEBRO f − ( u ( 0 − , t )) = f + ( u ( 0 + , t )) , t > 0 . Rankine-Hugoniot jump relation Convenient entropy condition at the interface (Discontinuous flux conservative coupling) State coupling G ODLEWSKI , R AVIART u ( 0 − , t ) = u ( 0 + , t ) , t > 0 . No physical entropy criterion at the interface or more generally ( ⇒ study of the microscopical dynamic) θ − ( u ( 0 − , t )) = θ + ( u ( 0 + , t )) , t > 0 . θ ± change of variable. (Non-conservative coupling) Difficulty : Both frameworks are usually inconciliable ! Example (cont.) : ( A MBROSO et al. 2005 ) conservation of ρ E and preservation of steady states p , v = cst are not conciliable. B. Boutin Coupling techniques. . . 25/10/11 5/22

  9. C ONSERVATIVE VS . NON - CONSERVATIVE COUPLING Two strictly hyperbolic PDE problems :   ∂ t u + ∂ x f − ( u ) = 0 , x < 0 , t > 0 ,   u ( x , t ) ∈ R N , x ∈ R .    ∂ t u + ∂ x f + ( u ) = 0 , x > 0 , t > 0 , Flux coupling A UDUSSE , P ERTHAME , S EGUIN , V OVELLE , T OWERS , K ARLSEN , R ISEBRO f − ( u ( 0 − , t )) = f + ( u ( 0 + , t )) , t > 0 . Rankine-Hugoniot jump relation Convenient entropy condition at the interface (Discontinuous flux conservative coupling) State coupling G ODLEWSKI , R AVIART u ( 0 − , t ) = u ( 0 + , t ) , t > 0 . No physical entropy criterion at the interface or more generally ( ⇒ study of the microscopical dynamic) θ − ( u ( 0 − , t )) = θ + ( u ( 0 + , t )) , t > 0 . θ ± change of variable. (Non-conservative coupling) Difficulty : Both frameworks are usually inconciliable ! Example (cont.) : ( A MBROSO et al. 2005 ) conservation of ρ E and preservation of steady states p , v = cst are not conciliable. B. Boutin Coupling techniques. . . 25/10/11 5/22

  10. C ONSERVATIVE VS . NON - CONSERVATIVE COUPLING Two strictly hyperbolic PDE problems :   ∂ t u + ∂ x f − ( u ) = 0 , x < 0 , t > 0 ,   u ( x , t ) ∈ R N , x ∈ R .    ∂ t u + ∂ x f + ( u ) = 0 , x > 0 , t > 0 , Flux coupling A UDUSSE , P ERTHAME , S EGUIN , V OVELLE , T OWERS , K ARLSEN , R ISEBRO f − ( u ( 0 − , t )) = f + ( u ( 0 + , t )) , t > 0 . Rankine-Hugoniot jump relation Convenient entropy condition at the interface (Discontinuous flux conservative coupling) State coupling G ODLEWSKI , R AVIART u ( 0 − , t ) = u ( 0 + , t ) , t > 0 . No physical entropy criterion at the interface or more generally ( ⇒ study of the microscopical dynamic) θ − ( u ( 0 − , t )) = θ + ( u ( 0 + , t )) , t > 0 . θ ± change of variable. (Non-conservative coupling) Difficulty : Both frameworks are usually inconciliable ! Example (cont.) : ( A MBROSO et al. 2005 ) conservation of ρ E and preservation of steady states p , v = cst are not conciliable. B. Boutin Coupling techniques. . . 25/10/11 5/22

  11. O UTLINE Position of the problem 1 Geometrical framework for the state coupling 2 Weak form of boundary conditions Existence result Thin interface regime 3 Reformulation of the problem D AFERMOS regularization Interfacial layers of R IEMANN -D AFERMOS solutions 4 Thick interface regime Theoretical results Numerical observations B. Boutin Coupling techniques. . . 25/10/11 6/22

  12. W EAK FORM OF BOUNDARY CONDITIONS Half-C AUCHY problem ( D UBOIS & L E F LOCH , 1988 ) t Let W ( x / t , u l , u r ) be the self-similar entropy solution for ∂ t u + ∂ x f ( u ) = 0 the Riemann problem with data ( u l , u r ) . b ( t ) � � x u 0 Set O ( b ( t )) = W ( 0 + , b ( t ) , � . 0 u ) , � u ∈ Ω ” u ( 0 + , t ) = b ( t ) ” → well-posed problem. u ( 0 + , t ) ∈ O ( b ( t )) Two half-C AUCHY problems sticked together ( G ODLEWSKI & R AVIART , 2004 ) u ( 0 − , t ) = u ( 0 + , t )   u ( 0 − , t ) ∈ O − ( u ( 0 + , t )) ,      u ( 0 + , t ) ∈ O + ( u ( 0 − , t )) . ∂ t u + ∂ x f − ( u ) = 0 ∂ t u + ∂ x f + ( u ) = 0 x 0 B. Boutin Coupling techniques. . . 25/10/11 7/22

  13. W EAK FORM OF BOUNDARY CONDITIONS Half-C AUCHY problem ( D UBOIS & L E F LOCH , 1988 ) t Let W ( x / t , u l , u r ) be the self-similar entropy solution for ∂ t u + ∂ x f ( u ) = 0 the Riemann problem with data ( u l , u r ) . b ( t ) � � x u 0 Set O ( b ( t )) = W ( 0 + , b ( t ) , � . 0 u ) , � u ∈ Ω ” u ( 0 + , t ) = b ( t ) ” → well-posed problem. u ( 0 + , t ) ∈ O ( b ( t )) Two half-C AUCHY problems sticked together ( G ODLEWSKI & R AVIART , 2004 ) u ( 0 − , t ) = u ( 0 + , t )   u ( 0 − , t ) ∈ O − ( u ( 0 + , t )) ,      u ( 0 + , t ) ∈ O + ( u ( 0 − , t )) . ∂ t u + ∂ x f − ( u ) = 0 ∂ t u + ∂ x f + ( u ) = 0 x 0 B. Boutin Coupling techniques. . . 25/10/11 7/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend