n 8 supergravity at five loops
play

N =8 Supergravity at Five Loops Henrik Johansson Uppsala U. & - PowerPoint PPT Presentation

N =8 Supergravity at Five Loops Henrik Johansson Uppsala U. & Nordita Amplitudes in the LHC era GGI Florence, Oct 31, 2018 Based on recent work: 1701.02519, 1708.06807, 1804.09311 w/ Zvi Bern, John Joseph Carrasco, Wei-Ming Chen, Alex


  1. N =8 Supergravity at Five Loops Henrik Johansson Uppsala U. & Nordita Amplitudes in the LHC era GGI Florence, Oct 31, 2018 Based on recent work: 1701.02519, 1708.06807, 1804.09311 w/ Zvi Bern, John Joseph Carrasco, Wei-Ming Chen, Alex Edison, Julio Parra-Martinez, Radu Roiban, Mao Zeng and older work: 0702112, 0905.2326, 1008.3327, 1201.5366 w/ Zvi Bern, John Joseph Carrasco, Lance Dixon, David Kosower, Radu Roiban

  2. Outline Ou Motivation & Review: Status of N =8 SUGRA UV behavior Previous 3,4 loop results Key steps in calculation Generalized double copy for gravity ampl. Controlling UV behavior of N =4 SYM Improved UV integration, IBP & vacuum diag. Results at 5 loops The critical UV behavior at 5 loops Simplicity in pattern of diagrams Conclusion

  3. SUGRA status on one page Known facts: Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström, Susy forbids 1,2 loop div. R 2 , R 3 Green, Schwarz, Brink, Marcus, Sagnotti Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti With matter: 1-loop divergent ‘t Hooft & Veltman N=8 SG Naively susy allows 3-loop div. R 4 N =8 SG and N =4 SG 3-loop finite! Bern, Carrasco, Dixon, HJ, Kosower, Roiban, Davies, Dennen, Huang N =8 SG: no divergence before 7 loops D>4 d ivergences @ L =2,3,4 UFinite? Marcus, Sagnotti, Bern, Dixon, Dunbar, Perelstein, Rozowsky, Carrasco, HJ, Kosower, Roiban Only known D=4 SG divergence: Bern, Davies, Dennen, Smirnov 2 N =4 @ 4 loops ( à more questions than answers) 7-loop D =4 calculation difficult instead work out 5 loops in D =24/5 à this talk

  4. Why is it interesting ? If N =8 SG is perturbatively finite, why is it interesting ? It might be finite for a good reason! hidden new symmetry Other mechanism or structure à open a host of possibilities Any indication of hidden structures yet? Gravity is a double copy of gauge theories Gravity Color-Kinematics: kinematics = Lie algebra Bern, Carrasco, HJ Kallosh et al., Nicolai, Constraints from E-M duality ? Roiban, Freedman Hidden superconformal symmetry ? Ferrara, Kallosh, Van Proeyen; Loebbert, Mojaza, Plefka; HJ, Mogull, Teng; Caron-Huot, Trinh, … Extended N =4 superspace ? Bossard, Howe, Stelle Symmetry? Exceptional field theory Bossard, Kleinschmidt

  5. UV problem = basic power counting Naively expect gravity to behave worse than Yang-Mills d 4 L p. . . ( κ p µ p ν ) . . . Z Gravity: non-renormalizable ∼ dimensionful coupling p 2 1 p 2 2 p 2 3 . . . p 2 n d 4 L p . . . ( gp µ ) . . . Z Yang-Mills: renormalizable ∼ dimensionless coupling p 2 1 p 2 2 p 2 3 . . . p 2 n ( p µ ) 2 L → ( k µ ) 2 L For finite gravity à vast cancellations needed ∼ seems implausible, but exists for N =8 SG in all known ampl’s. external momenta

  6. Textbook perturbative gravity is complicated ! de Donder = gauge = After symmetrization 100 terms ! higher order vertices… 10 3 terms complicated diagrams: 10 4 terms 10 7 terms 10 21 terms 10 31 terms

  7. On-she On shell si simplifications ns Graviton plane wave: Yang-Mills polarization On-shell 3-graviton vertex: = Yang-Mills vertex Gravity scattering amplitude: Yang-Mills amplitude tree (1 , 2 , 3 , 4) = st M GR u A YM tree (1 , 2 , 3 , 4) ⊗ A YM tree (1 , 2 , 3 , 4) Kawai, Lewellen, Tye Gravity processes = “squares” of gauge theory ones - entire S-matrix Bern, Carrasco, HJ

  8. Historical record – where is the N = 8 div. ? Conventional superspace power counting 3 loops Green, Schwarz, Brink (1982) Howe and Stelle (1989) Marcus and Sagnotti (1985) Partial analysis of unitarity cuts; If N = 6 harmonic 5 loops Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998) superspace exists; algebraic renormalisation Howe and Stelle (2003,2009) 6 loops If N = 7 harmonic superspace exists Howe and Stelle (2003) If N = 8 harmonic superspace exists; Grisaru and Siegel (1982); 7 loops Green, Russo, Vanhove; Kallosh; string theory U-duality analysis; Beisert, Elvang, Freedman, lightcone gauge locality arguments; Kiermaier, Morales, Stieberger; E 7(7) analysis, unique 1/8 BPS candidate Bossard, Howe, Stelle, Vanhove Explicit identification of potential susy invariant Howe and Lindström; 8 loops Kallosh (1981) counterterm with full non-linear susy Assume Berkovits ’ superstring non-renormalization 9 loops Green, Russo, Vanhove (2006) theorems can be carried over to N = 8 supergravity Identified cancellations in multiloop amplitudes; Finite Bern, Dixon, Roiban (2006), lightcone gauge locality and E 7(7) , Kallosh (2009–12), Ferrara, Kallosh, Van Proeyen (2012) inherited from hidden N=4 SC gravity note: above arguments/proofs/speculation are only lower bounds à only an explicit calculation can prove the existence of a divergence!

  9. N =8 Amplitude and Counter Term Structure divergence Loop 4pt amplitude form Counter term first occurs in order (any dimension) 1 D c = 8 Green, Schwarz, Brink Bern, Dixon, Dunbar, D c = 7 2 Perelstein, Rozowsky Bern, Carrasco, Dixon, 3 D c = 6 HJ, Kosower, Roiban Bern, Carrasco, 4 D c = 5.5 Dixon, HJ, Roiban ? ? D c = 24/5 ? 5 ? ? ∼ ∂ 10 R 4 D c = 26/5 ? ∼ ∂ 10 R 4 The critical dimension divergence tells us how many derivatives are pulled out of the integral à counter term structure @

  10. Known UV divergences in D >4 Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 1-2 2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban calculations: 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 6 26/5 or 24/5 ? Divergent Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, ? Perelstein; Howe, Stelle current trend for N = 8 Finite If N = 8 div. at L =7 L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, H. Johansson 2013 Siegel, Russo, Cederwall, Karlsson, and more….

  11. 3,4,5-loop calculations

  12. 3-loop N =8 SG & N =4 SYM Using color-kinematics duality: Bern, Carrasco, HJ Be Bern, Carrasco, Dixon, HJ, , Ko Kosower, , Ro Roiban UV divergent in D =6: Be Bern, , Carrasco, , Di Dixon, , HJ HJ, , Ro Roiban A (3) � c V (A) + 12 N c ( V (A) + 3 V (B) )) × ( u Tr[ T a 1 T a 2 T a 3 T a 4 ] + perms) pole = 2 g 8 stA tree ( N 3 � � V (A) + 3 V (B) = ζ 3 ⌘ 8 M (3) � ⇣ κ ( stu ) 2 M tree ( V (A) + 3 V (B) ) 6 pole = 10 � 2 �

  13. 4-loops: 85 diagrams, 2 masters 7 3 7 8 6 3 8 7 2 3 8 5 5 1 2 5 6 4 7 4 1 1 5 6 2 3 6 8 4 5 4 7 8 1 6 2 6 5 3 4 4 5 8 7 7 8 1 7 6 6 2 3 2 4 3 4 1 5 7 5 8 8 5 8 2 7 7 4 5 3 6 6 1 8 6 3 8 7 3 4 5 2 8 1 4 5 6 7 8 7 3 2 2 7 1 5 4 6 6 5 3 8 7 3 8 3 3 3 1 3 4 3 2 5 5 4 7 4 6 6 6 7 7 7 1 6 3 7 2 2 2 2 6 2 8 7 7 4 3 3 5 8 8 5 4 4 8 8 8 5 6 5 6 5 1 6 1 4 1 1 8 6 1 4 5 8 4 5 7 5 5 6 8 6 5 6 2 4 1 2 7 8 (78) (77) 8 1 4 8 7 7 8 3 3 3 2 3 2 3 2 3 2 2 4 8 6 8 5 3 4 1 5 7 1 5 7 4 1 5 7 4 1 5 7 4 5 7 1 5 7 2 5 6 6 6 6 6 6 1 6 7

  14. 4-loop N =8 SG and N =4 SYM Be Bern, Carrasco, Dixon, HJ, J, Ro Roiban 1201.5366 •85 diagrams •Power counting manifest •N =4 & N =8 diverge in D =11/2 up to overall factor, divergence same as for N =4 SYM part

  15. 5 loops à 752 cubic graphs à 3 masters à Ansätze ~ 500k almost work à Back to the drawing board!

  16. 5-loop N =4 SYM the traditional way 1207.6666 [hep-th] N =4 SYM important stepping stone to N =8 SG Bern, Carrasco, HJ, Roiban • 416 nonvanishing integral topologies: (335) (370) (404) (410) • Used maximal cut method Bern, Carrasco, HJ, Kosower • Maximal cuts: 410 N 2 MC N 3 MC MC NMC • Next-to-MC: 2473 Unitarity cuts done in D dimensions • N 2 MC: 7917 • N 3 MC: 15156 integrated UV div. in D =26/5 Non-Planar UV divergence in D =26/5: � div = − 144 � � + 12( V (a) + 2 V (b) + V (c) ) � A (5) 5 g 12 stA tree N 3 N 2 c V (a) � 4 4 c � × Tr[ T a 1 T a 2 T a 3 T a 4 ]

  17. Key methods for 5 loops

  18. Double copy is necessary Unitarity & Ansätze possible way forward? Pessimistic counting: • Works for 5-loop N =4 SYM n SYM ∼ 8000 terms • 5-loop SG seems too difficult n SG ∼ (8000) 2 / 2 (ansatz: billions of terms) ∼ 30 000 000 terms Only way: use some form of double copy • On maximal cuts à naïve double copy works à square SYM numerators • On non-maximal cuts à KLT works in principle, but not in practice • KLT relations are non-local, non-crossing symmetric à bad for loops • Need something better than KLT, and less constraining than BCJ Generalized double copy --- when color-kinematics duality is non-manifest

  19. Generalized Double copy Bern, Carrasco, Chen, HJ, Roiban Consider 4pt tree-level as warm-up: Assume: not BCJ numerators YM Gravity Contact terms have to to vanish if numerator Jacobi relation holds Note: example too simple since all 4pt tree numerators obey BCJ

  20. Generalized Double copy Bern, Carrasco, Chen, HJ, Roiban Consider two 4pt trees in a unitarity cut: YM L R GR sum rows or columns In fact, the contact is given by independent of i and j Jacobi à contact terms are bilinears in the Jacobi discrepancies Jacobi à appears to work for general cuts

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend