modeling of sgb e circumstellar disks
play

Modeling of sgB[e] circumstellar disks urst 1 , Achim Feldmeier 2 , - PowerPoint PPT Presentation

Modeling of sgB[e] circumstellar disks urst 1 , Achim Feldmeier 2 , and Ji cka 1 Petr Kurf r Krti 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic 2 Institut f ur Physik und Astronomie,


  1. Modeling of sgB[e] circumstellar disks urst 1 , Achim Feldmeier 2 , and Jiˇ cka 1 Petr Kurf¨ r´ ı Krtiˇ 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic 2 Institut f¨ ur Physik und Astronomie, Universit¨ at Potsdam, Potsdam-Golm, Germany The B[e] Phenomenon: Forty Years of Studies Praha, June 27, 2016

  2. Main stellar types associated with outflowing disks Be phenomenon - “a non-sg B-type star with Balmer spectral lines in emission”

  3. Main stellar types associated with outflowing disks Be phenomenon - “a non-sg B-type star with Balmer spectral lines in emission” B[e] phenomenon: • B-type stars with forbidden optical emission lines ( Conti 1976 ) • Different populations with different mechanisms responsible for feeding CE with gas ( Lamers+ 1998 , Miroshnichenko 2007 ) • sgB[e]: B supergiants with relative luminosity log( L ⋆ / L ⊙ ) � 4 . 0 • HAeB[e] or pre-main sequence stars: very young stars - evidence of CM inflow rather than outflow • cPNB[e]: compact planetary nebula stars - low mass stars - evolving into planetary nebula ( Ciatti+ 1974 ) • SymB[e]: symbiotic stars - interacting binaries with a hot compact object and a cool giant - surrounded by a nebula • unclB[e]: unclassified stars - do not fit to any of the previous classes

  4. Main stellar types associated with outflowing disks Be phenomenon - “a non-sg B-type star with Balmer spectral lines in emission” B[e] phenomenon: • B-type stars with forbidden optical emission lines ( Conti 1976 ) • Different populations with different mechanisms responsible for feeding CE with gas ( Lamers+ 1998 , Miroshnichenko 2007 ) • sgB[e]: B supergiants with relative luminosity log( L ⋆ / L ⊙ ) � 4 . 0 • HAeB[e] or pre-main sequence stars: very young stars - evidence of CM inflow rather than outflow • cPNB[e]: compact planetary nebula stars - low mass stars - evolving into planetary nebula ( Ciatti+ 1974 ) • SymB[e]: symbiotic stars - interacting binaries with a hot compact object and a cool giant - surrounded by a nebula • unclB[e]: unclassified stars - do not fit to any of the previous classes • Disk formation mechanisms still under debate - viscous disk × outlowing disk-forming wind? ( Kraus+ 2007 , 2010 )

  5. Basic hydrodynamics Basic (magneto)hydrodynamics in conservative form: • Continuity equation (mass conservation law) ∂ρ ∂ t + � ∇ · ( ρ� V ) = 0 • Equation of motion (conservation of momentum, angular momentum) ∂ ( ρ� V ) ∇ Φ + 1 + � ∇ · ( ρ� V � V ) = − � ∇ p − ρ� µ ( � ∇ × � B ) × � B (+ � f visc .... ) ∂ t • Energy equation ρǫ + ρ V 2 2 + B 2 � � ∂ E ∂ t + � ∇ · ( E � V ) = − � ∇ · ( p � V ) .... , E = 2 µ • Induction equation ∂� B � � ∂ t = � V × � � ∇ × B • Equations of state E − ρ V 2 2 − B 2 � � p = ρ a 2 p = ( γ − 1) , 2 µ

  6. Basic hydrodynamics Determining equations of viscous disk structure ∞ � • Integrated disk column (surface) density Σ = ρ d z −∞ • Shear viscous stress σ R φ ≈ η dV φ dR ≈ ν Σ dV φ dR ≈ α a λ Σ dV φ dR , η = f ρλ V turb • Kinematic viscosity ν , viscosity parameter α ( Shakura & Sunyaev 1972 ) ν = η/ρ ∼ λ V turb ≈ α a λ, α = V turb / a • Parameterization of temperature and viscosity: � p � n � R eq � R eq T = T ( R eq ) , α = α ( R eq ) R R • The full second order φ component of viscosity ( ∂/∂φ = 0 , ∂/∂ z = 0): � � σ R φ = − 1 ∂ α a 2 R 3 Σ ∂ ln V φ − α a 2 R 2 Σ R 2 ∂ R ∂ R

  7. 1-D hydrodynamic modeling of circumstellar viscous disks • Time-dependent 1-D hydrodynamic calculations using own MHD code ( Kurf¨ urst, Feldmeier & Krtiˇ cka 2014 ) • In the models we recognize the wave that converges the initial state to the final stationary state Left panel: disk of classical Be star, Right panel: disk of sgB[e] star, M =14.5 M ⊙ , R =5.8 R ⊙ , T eff = 30 kK M =40 M ⊙ , R =75 R ⊙ , T eff = 20 kK Video otevˇ rete kliknut´ ım na Video otevˇ rete kliknut´ ım na n´ asleduj´ ıc´ ı n´ asleduj´ ıc´ ı odkaz : odkaz : Be evolution.mp4 B[e] evolution.mp4 � • In supersonic region - a shock wave with propagation speed D = a Σ 1 / Σ 0 • The shock propagation time t dyn ≈ R / D = 0 . 3 R / a - the disk evolution time � R R eq V φ d R / ( α a 2 ) • Corresponding disk viscous time t visc =

  8. 1-D hydrodynamic modeling of circumstellar viscous disks B0 star sgB[e] star T eff = 30 kK T eff = 20 kK 10 2 . . 10 2 . . J / J ( R eq ) log g ≈ 2 . 1 J / J ( R star ) log g ≈ 0 . 4 V φ / V K 1 V φ / V K 1 V crit ≈ 560 km/s V crit ≈ 250 km/s 10 -2 V R / a V R / a 10 -2 10 -4 Σ / Σ ( R eq ) 10 -4 Σ / Σ ( R star ) 10 -6 10 -6 10 -8 n = 0.0 n = 0.0 10 -8 n = 0.2 10 -10 n = 0.2 n = -0.1 n = -0.1 10 -12 10 -10 10 2 10 3 10 4 10 5 10 2 10 3 10 4 1 10 1 10 . . . . 10 2 . . J / J ( R eq ) J / J ( R eq ) 10 2 J / J ( R star ) V φ / V K V φ / V K 1 V φ / V K 1 10 -2 V R / a V R / a 10 -2 V R / a 10 -4 10 -4 10 -6 Σ / Σ ( R eq ) Σ / Σ ( R eq ) Σ / Σ ( R star ) 10 -6 10 -8 n = 0.0 n = 0.0 n = 0.0 10 -8 n = 0.2 10 -10 n = 0.2 n = 0.2 n = -0.1 n = -0.1 n = -0.1 10 -12 10 -10 10 2 10 3 10 4 10 5 10 2 10 3 10 4 1 10 1 10 R / R eq R / R star • Upper panels: T = 0 . 6 T eff , lower panels: T ∼ 0 . 6 T eff R − 0 . 4 • α ( R ⋆ ) = 0 . 025 ( Penna+ 2012 ), α ∼ R − n • Sonic point radius dependence on T profile, in sgB[e] disk significantly lower

  9. 1-D calculations of disk magnetorotational instability • Powerful shearing instability ( Balbus & Hawley 2003 ) - main source of anomalous viscosity in Be star disks (cf. talk of J. Krtiˇ cka) • Is it true also in sgB[e] disks? (cf. Kraus+ 2007 ) • MS B3 star, T eff = 20 kK, T = 0 . 6 T eff , α ≈ 0 . 1 (1 − R / 390 R eq ) (Krtiˇ cka+ 2015 ) 10 2 . . 10 2 V φ / a J / J ( R eq ) 10 . . V φ / a J / J ( R eq ) 10 i ω / Ω 1 i ω / Ω 1 10 -1 N R / Ω R crit V R / a N R / Ω 10 -1 ρ 0 / ρ 0 ( R eq ) R crit V R / a 10 -2 ρ 0 / ρ 0 ( R eq ) 10 -2 10 -3 α = α ( R eq ) 10 -3 α ≈ α ( R eq )[1-R/390 R eq ] α = α ( R eq ) 10 -4 α ≈ α ( R eq )[1-R/390 R eq ] 1 10 100 1000 10 -4 R / R eq 1 10 100 1000 R / R eq • Left panel: inner boundary viscosity α ( R eq ) = 0 . 025, right panel: α ( R eq = 0 . 1) • Magnetorotational instability calculated in the disk midplane ( N z = 0) • In Keplerian region MRI frequency ω = 3 / 4 i Ω • The radius where MRI instability vanishes increases with decreasing viscosity

  10. 1-D hydrodynamic modeling of circumstellar viscous disks • Models with very low constant initial density • B-type star, T eff = 25 000 K, V eq ≈ 300 km s − 1 • Σ ini is of a very low constant value throughout the entire isothermal disk with constant viscosity α = 0 . 025 • Snapshots of evolved radial profiles of the disk Σ and V R in two different times 10 6 10 6 t = 25 yrs t = 160 yrs 10 4 10 4 V R (m s -1 ) V R (m s -1 ) 10 2 10 2 1 1 10 -2 10 -2 10 -4 10 -4 Σ (arbitrary units) Σ (arbitrary units) 10 -6 10 -6 10 -8 10 -8 10 -10 10 -10 10 2 10 3 10 4 10 5 10 6 10 2 10 3 10 4 10 5 10 6 1 10 1 10 R / R eq R / R eq • Rarefaction wave propagates radially with time ( cf. Kurf¨ urst+ 2014 ) • The gas is moved to the edge of the unperturbed ISM • Density bumps at the edge of ISM - bow shocks ?

  11. 1-D hydrodynamic modeling of circumstellar viscous disks • B[e] CE - disks or rings? (courtesy from G. Maravelias) • Multiple rings are traced by emission of [OI], [CaII] and CO

  12. 1-D hydrodynamic modeling of circumstellar viscous disks • B[e] CE - disks or rings? (courtesy from G. Maravelias) • Multiple rings are traced by emission of [OI], [CaII] and CO • Models with subcritically rotating star � GM ⋆ R eq • Model with stellar radial pulsations: V φ ( R eq )( t ) = R eq + ( δ R eq ) sin ω t 10 8 • ω corresponds to P ≥ 0 . 25 d (6 hours) and Σ (kg m -2 ) 10 6 δ R eq = 0 . 1 R eq t 0 + 1.5 h 10 4 t 0 + 4.5 h V R (m s -1 ) • Pulsations in Σ and V R up to 2-3 stellar radii, t 0 + 7.5 h 10 2 otherwise they rapidly decrease 1 • Three different times of Σ and V R waves 10 -2 1 1.2 1.4 1.6 1.8 2.0 R / R eq

  13. 1-D hydrodynamic modeling of circumstellar viscous disks • B[e] CE - disks or rings? (courtesy from G. Maravelias) • Models with subcritically rotating star • The model with sgB[e] star parameters: V φ ( R ⋆ ) = 90% of V crit , α ≥ 0 . 5 • The material may fall inwards and increase the angular momentum of the inner disk Video otevˇ rete kliknut´ ım na ı odkaz : • May these waves explain the rings? n´ asleduj´ ıc´ subcritical.mp4 • Probably not since no significant radial motion is detected (priv. comm. with G. Marvelias) • Black line denotes the density in case of V crit

  14. 2-D hydrodynamic modeling Time-dependent 2-D calculations • Calculation of vertical hydrodynamic and thermal structure of the disk • Vertical hydrostatic equilibrium in the thin disk ( z ≪ R ): − z 2 � � ρ ≈ ρ 0 exp , where ρ 0 is the disk midplane density 2 H 2 √ • Vertical scale height: H = aR / V φ , Σ ≈ 2 πρ 0 H . • Vertical thermal equilibrium: 3 κ p dT dz = ∇ T dp F z dz , ∇ = d ln T / d ln p , ∇ rad = p 16 σ T 4 g z • Including convection ∇ rad > ∇ ad and satisfying the condition F z = 0 at z = 0, we obtain the vertical temperature distribution (Lee+ 1991 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend