matthieu dien o bodini x fontaine a genitrini h k hwang
play

Matthieu Dien O. Bodini, X. Fontaine, A. Genitrini, H.-K. Hwang - PowerPoint PPT Presentation

Matthieu Dien O. Bodini, X. Fontaine, A. Genitrini, H.-K. Hwang Universit Pierre et Marie Curie Laboratoire LIP6 quipe APR Mardi 8 Mars 2016 1/13 Outline Introduction Asymptotic study of the diamonds Random Generation


  1. Matthieu Dien O. Bodini, X. Fontaine, A. Genitrini, H.-K. Hwang Université Pierre et Marie Curie Ą Laboratoire LIP6 Ą Équipe APR Mardi 8 Mars 2016 1/13

  2. Outline ‚ Introduction ‚ Asymptotic study of the diamonds ‚ Random Generation ‚ Conclusion 2/13

  3. Introduction Motivations ‚ Combinatorial study of concurrents programs (seen as discrete structures) ‚ Quantitative study of the combinatorial explosion phenomena: the large number of possible runs (seen as increasing labellings) Approach: Analytic Combinatorics ‚ symbolic method to modelize (Greene’s “box” operators) ‚ singularity analysis to obtain asymptotics of the number of increasing labellings ‚ based on previous work on increasing trees of [F. Bergeron, P. Flajolet and B. Salvy ’92] 3/13

  4. Combinatorial specifications Skeleton ‚ S “ Z ` Z ¨ G p S q ¨ Z ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ 4/13

  5. Combinatorial specifications Skeleton 1 S “ Z ` Z ¨ G p S q ¨ Z 2 5 4 Increasing labellings 3 6 8 9 7 11 I “ Z ` Z ˝ ‹ G p I q ‹ Z ‚ 12 10 13 14 4/13

  6. Combinatorial specifications Skeleton 1 S “ Z ` Z ¨ G p S q ¨ Z 2 5 4 Increasing labellings 3 6 8 9 7 11 I “ Z ` Z ˝ ‹ G p I q ‹ Z ‚ 12 10 Differential equation 13 I 2 “ G p I q $ & I p 0 q “ 0 14 I 1 p 0 q “ 1 % 4/13

  7. Easy case: non-plane diamonds We start with the differential equation: A 2 p z q “ e A p z q We can solve it: A 1 p z q “ tan z ` sec z The poles are the p 2 k ` 1 2 q π Using the residue theorem we get: a n “ 2 n ` 1 p n ´ 1 q ! `8 1 ÿ p 1 ` 4 j q n . π n j “´8 5/13

  8. Easy case: non-plane diamonds We start with the differential equation: A 2 p z q “ e A p z q We can solve it: A 1 p z q “ tan z ` sec z The poles are the p 2 k ` 1 2 q π Using the residue theorem we get: a n “ 2 n ` 1 p n ´ 1 q ! `8 1 ÿ p 1 ` 4 j q n . π n j “´8 p a n q n ě 1 “ t 1 , 1 , 1 , 2 , 5 , 16 , 61 , 272 , 1385 , 7936 , 50521 , 353792 , . . . u Known in OEIS to count the number of number of increasing unary-binary trees on n vertices. 5/13

  9. Bijection Increasing unary-binary trees Non-plane diamonds T “ Z ` Z ˝ ‹ p T ` Set “ 2 p T qq A “ Z ` Z ˝ ‹ Set p A q ‹ Z ‚ T 2 p z q “ p 1 ` T p z qq ¨ T 1 p z q N 3 p z q “ N 1 p z q ¨ N 2 p z q 1 1 2 2 N 2 “ e N N 1 T 1 1 ` T n Thanks to A. Bacher, G. Collet and C. Mailler (and ALEA Network) 6/13

  10. Elliptic cases Weierstrass’s case F 2 “ P p F q where P is a polynomial of degree 2, then: F p z q “ K ℘ p z ´ ρ ; ω 1 , ω 2 q ż 8 d t with ρ “ and K a constant. b ş t 0 1 ` 2 0 P p v q d v Weierstrass’s elliptic function ℘ is defined periodically over a lattice that contains one double pole in a corner of each cell: ℘ p z ; ω 1 , ω 2 q “ 1 ˆ 1 1 ˙ ÿ z 2 ` p z ` k ω 1 ` l ω 2 q 2 ´ p k ω 1 ` l ω 2 q 2 p k , l qP Z 2 ztp 0 , 0 qu 7/13

  11. Elliptic cases Jacobi’s case F 2 “ P p F q where P is a polynomial of degree 3, then ? let g 2 “ β ´ δ α ´ δ ¨ F ´ 2 α ? 2 β with α , β and δ well chosen then F ´ g 1 p z q “ M p 1 ´ z 2 qp 1 ´ ℓ 2 z 2 q and so a g p z q “ sn p Mz ; ℓ q Jacobi’s elliptic sinus function sn is defined periodically over a lattice that contains two simple poles in each cell and a zero in a corner. 8/13

  12. Elliptic cases: binary and ternary diamonds Weierstrass case: binary diamonds B “ Z ` Z ˝ ‹ p E ` B ‹ B q ‹ Z ‚ B 2 “ 1 ` B 2 b n “ 6 p n ` 1 q ! 1 n Ñ8 6 p n ` 1 q ! ÿ „ ρ n ` 2 ¯ n ` 2 ρ n ` 2 ´ 1 ` k ω 1 ρ ` l ω 2 p k , l qP Z 2 ρ Jacobi’s case: ternary diamonds T “ Z ˝ ‹ p E ` T ‹ T ‹ T q ‹ Z ‚ T 2 “ 1 ` T 3 ? ? 2 n ! 1 1 2 p n ` 1 q ! ÿ t n “ ˘ n ` 1 ´ n Ñ8 6 „ ρ n ` 1 ˘ n ` 1 ρ n ` 1 ` ` 1 ` C k , l 2 ` C k , l p k , l qP Z 2 ? with C k , l “ 3 k 3 2 ` i 2 p k ` 2 l q 9/13

  13. More general cases Asymptotics results ‚ Diamonds of fixed arity ( G P Z r X s and deg p G q “ m ): 2 m ´ 1 n ´ m ´ 3 ˜ a ¸ 2 p m ` 1 q m ´ 1 2 ´ ´ 4 ¯¯ m ´ 1 q ρ ´ n ´ n ´ p m ´ 1 q? b m f n “ n ! 1 ` O m ´ 1 m ´ 1 2 Γ p ‚ Plane general diamonds ( G “ Seq): ˜ ÿ ˙¸ n ! ρ 1 ´ n ˆ p log log n q K P k p log log n q f n “ ` O p log n q K n 2 a p log n q k 2 log n 0 ď k ă K Sequence A032035 in OEIS which also enumerates increasing rooted (2,3)-cacti with n ´ 1 nodes 10/13

  14. Random Generation of the skeletons Boltzmann method ‚ Straightforward use of standard techniques [P. Duchon, P. Flajolet, G. Louchard & G. Schaeffer ’04] ‚ a bit of tricks to draw an object from F from Γ F 2 [O. Bodini, O. Roussel & M. Soria ’12] and [O. Bodini ’10] ñ Boltzmann generator using only uniform random variable to draw object such that F 2 “ φ p F q 11/13

  15. Random Generation of the increasing labellings • • • “ • | B B B • • • 12/13

  16. Random Generation of the increasing labellings diamond ñ increasing labelling ‚ ñ return p 1 q 12/13

  17. Random Generation of the increasing labellings diamond ñ increasing labelling • • • x : “ draw_inc_lbl p B 1 q y : “ draw_inc_lbl p B 2 q B 1 B 2 ñ t : “ shuffle p x , y q | t | “ | x | ` | y | • • return p 1 , t ` 1 , | t | ` 1 q • 12/13

  18. Random Generation of the increasing labellings diamond ñ increasing labelling • • • x : “ draw_inc_lbl p B 1 q y : “ draw_inc_lbl p B 2 q B 1 B 2 ñ t : “ shuffle p x , y q | t | “ | x | ` | y | • • return p 1 , t ` 1 , | t | ` 1 q • Average complexity ‚ The average complexity of draw_inc_lbl in memory writings is O p n ? n q ‚ The average number of random bits needed during the generation is O p n 3 { 2 log n q 12/13

  19. Current work ‚ study of the average of some parameters (width, depth, root’s degree ...) of the increasingly labelled structures ‚ study of a bit more realistic model, from a concurrency point of view: • • • • • FJ “ • | | FJ FJ FJ • • • • FJ • ‚ more efficient algorithms for the random generation of increasing labellings Open question ‚ for the elliptic cases, how to do for showing the periodicity of the solutions directly from the differential equation ? ‚ is this periodic behaviour still present for higher degree of polynomial ? 13/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend