low energy effective action for pions and a dilatonic
play

Low-energy effective action for pions and a dilatonic meson Maarten - PowerPoint PPT Presentation

Low-energy effective action for pions and a dilatonic meson Maarten Golterman San Francisco State University with Yigal Shamir , PRD94 (2016) 025020 arXiv:1610.01752, PRD95 (2017) 016003 Workshop APS Topical Group on Hadronic Physics, Feb. 3,


  1. Low-energy effective action for pions and a dilatonic meson Maarten Golterman San Francisco State University with Yigal Shamir , PRD94 (2016) 025020 arXiv:1610.01752, PRD95 (2017) 016003 Workshop APS Topical Group on Hadronic Physics, Feb. 3, 2017

  2. A light, narrow flavor-singlet scalar — seen on the lattice(?) • SU (3) , N f = 8 fund. [LatKMI, LSD,..] Consistent low-energy theory must contain both pions and the flavor-singlet scalar LSD collaboration, PRD 93 (2016) 114514 • SU (3) , N f = 2 sextet [Fodor et al.] 1

  3. Phases of SU ( N c ) with N f fundamental-rep Dirac fermions • running slows down when N f is increased ∂g 2 − b 1 b 2 16 π 2 g 4 − (16 π 2 ) 2 g 6 = ∂ log µ • two-loop IRFP g 2 ∗ develops when b 1 > 0 > b 2 • Gap equation ⇒ c = 4 π 2 ChSB when g 2 ( µ ) = g 2 3 C 2 c = π 2 ≃ 9 . 87 • SU (3) , fund. rep: g 2 • chirally broken if g c < g ∗ ( N f ) • emergent conformal symm. (IRFP) if g c > g ∗ ( N f ) • sill of conformal window: g ∗ ( N ∗ f ) = g c (note: N ∗ f not an integer) 2

  4. Pseudo Nambu-Goldstone boson of approx dilatation symmetry? Φ i ( x ) → λ ∆ i Φ i ( λx ) , • dilatations: ∆ i scaling dimension of field Φ i ( x ) • dilatation current S µ = x ν T µν is classically conserved for m = 0 • Trace anomaly [Collins, Duncan, Joglekar, PRD 16 , 438 (1977)] ∂ µ S µ = T µµ = − T cl − T an T an = β ( g 2 ) 4 g 2 F 2 + γ m m ψψ T cl = mψψ β ( g 2 c ) ∝ N f − N ∗ • below conformal sill, expect at ChSB scale f hence, increasing N f towards N ∗ f ⇒ smaller β ( g c ) at ChSB scale ⇒ better scale invariance ⇒ “dilatonic” pNG boson, τ , gets lighter • use N f − N ∗ f as small parameter (issue: N f takes discrete values) 3

  5. Low-energy EFT with dilatonic meson: power counting • standard ChPT: fermion mass m is a parameter of the microscopic theory that can be tuned continuously towards zero ⇒ Systematic expansion in m ∼ m 2 π and p 2 ; massless pions for m → 0 • issue: cannot turn off trace anomaly at fixed N c , N f • similar: cannot turn off U (1) A anomaly; but it vanishes for N c → ∞ ⇒ Systematic expansion in m , 1 /N c , and p 2 ; massless η ′ for m, 1 /N c → 0 • Here: Veneziano limit N f , N c → ∞ with n f = N f /N c fixed n f becomes a continuous parameter; theory depends only on g 2 N c and n f n ∗ f = lim N c →∞ N ∗ f ( N c ) /N c = sill of conformal window for N c → ∞ . f ) η at the ChSB scale T an ∼ ( n f − n ∗ • Assume: [ η = 1 in this talk] f , and p 2 ; ⇒ Systematic expansion in m , 1 /N c , n f − n ∗ massless dilatonic meson τ for m, 1 /N c , | n f − n ∗ f | → 0 4

  6. Spurions in the microscopic theory (abelian symmetries) 4 F 2 + ψ / Dψ + θicg 2 F ˜ L MIC ( θ ) = 1 axial U (1) A symmetry: F • δ L MIC ( θ ) = 0 if U (1) A transformation of axionic spurion is θ → θ + α similar U (1) A transformation for singlet meson η ′ → η ′ + α explicit breaking: δ L MIC ( θ 0 ) = − icg 2 F ˜ • now set � θ � = θ 0 ⇒ F • � θ � = 0 not special! L MIC ( θ 0 = 0) not invariant! dilatations: d d x e σ ( d − 4) � 1 � � � 4 F 2 + · · · � � S MIC ( σ ) d 4 x L MIC (0) + σT an + · · · = = g 2 0 • S MIC ( σ ) invariant if σ transforms as dilatonic spurion e σ ( x ) → λe σ ( λx ) • again, explicit breaking: S MIC not invariant for any � σ � 5

  7. EFT with pions Σ( x ) = e 2 iπ ( x ) /f π and dilatonic meson τ ( x ) • scale transformation: ( χ is fermion mass spurion, � χ � = m ) χ ( x ) → λ 1+ γ m χ ( λx ) source fields: σ ( x ) → σ ( λx ) + log λ , effective fields: τ ( x ) → τ ( λx ) + log λ , Σ( x ) → Σ( λx ) L EFT = ˜ L d → λ 4 ˜ ˜ L π + ˜ L τ + ˜ L m + ˜ L EFT • invariant low-energy theory: where ˜ V π ( τ − σ ) ( f 2 π / 4) e 2 τ tr ( ∂ µ Σ † ∂ µ Σ) L π = ˜ V τ ( τ − σ ) ( f 2 τ / 2) e 2 τ ( ∂ µ τ ) 2 L τ = � � ˜ − V M ( τ − σ ) ( f 2 π B π / 2) e (3 − γ m ) τ tr χ † Σ + Σ † χ L m = ˜ V d ( τ − σ ) f 2 τ B τ e 4 τ L d = with invariant potentials: V ( τ ( x ) − σ ( x )) → V ( τ ( λx ) − σ ( λx )) ⇒ No predictability without power counting! 6

  8. Power counting hierarchy from matching correlation functions • recall microscopic theory β ( g 2 ) � � ∂ ∂σ ( x ) L MIC 4 g 2 [ F 2 ( x )] ∼ n f − n ∗ � � = T an ( x ) = � � f � � σ = χ =0 χ =0 • effective theory � n � � ∂ τ B τ e 4 τ ( x ) + · · · V ( n ) ˜ L EFT f 2 � � � − = τ ( x ) � d ∂σ ( x ) � σ = χ =0 ∞ � c n ( τ − σ ) n ⇒ f ) n ) c n = O (( n f − n ∗ V ( τ − σ ) = where n =0 ⇒ Only a finite number of LECs at each order! 7

  9. Leading order lagrangian: L = L π + L τ + L m + L d ( f 2 π / 4) e 2 τ tr ( ∂ µ Σ † ∂ µ Σ) L π = ( f 2 τ / 2) e 2 τ ( ∂ µ τ ) 2 L τ = π B π / 2) e (3 − γ ∗ � Σ + Σ † � − ( mf 2 m ) τ tr L m = c 11 τ )] f 2 τ B τ e 4 τ c 00 + ( n f − n ∗ L d = [˜ f )(˜ c 01 + ˜ f )( τ − 1 / 4) ˆ τ ˆ c 11 ( n f − n ∗ f 2 B τ e 4 τ • use τ shift and redefine LECs to get L d = ˜ • m = renormalized mass at ChSB scale ⇒ choose γ m ( g ) = γ m ( g ∗ ) = γ ∗ m , where g ∗ is IRFP at the sill of the conformal window • corrections are accounted for by expansion in n f − n ∗ f 8

  10. Classical vacuum in the chiral limit • Dilatonic meson’s potential: V cl ( τ ) ∝ V d ( τ ) e 4 τ = ˜ c 11 ( n f − n ∗ f )( τ − 1 / 4) e 4 τ f ) ⇒ V cl ( τ ) bounded from below c 11 < 0 (recall n f < n ∗ • Self-consistency: ˜ • Effective theory at leading order seems “almost” scale invariant ◦ But: linear term in V d ( τ ) crucial; reflects breaking of scale invariance by running in microscopic theory ◦ Going to n f > n ∗ f , EFT classical potential becomes unbounded from below ⇒ EFT “knows” it cannot be used inside conformal window (where EFT has the wrong degrees of freedom)! 9

  11. Tree-level masses • m = 0 : shifted classical vacuum: v = � τ � = 0 B τ = e 2 v [pre-shift] B τ f ) ˆ ˆ ◦ dilatonic meson mass: m 2 c 11 ( n f − n ∗ τ = 4˜ B τ ⇒ m τ vanishes for n f → n ∗ f V cl ( τ ) = V d ( τ ) e 4 τ − m M e (3 − γ ∗ m ) τ • m > 0 : ⇒ v ( m ) increases monotonically with m (from v (0) = 0 ) f ) ˆ ◦ dilatonic meson mass: m 2 B τ e 2 v ( m ) � c 11 ( n f − n ∗ 1 + (1 + γ ∗ � τ = 4˜ m ) v ( m ) ⇒ m τ increases monotonically with m B π me (1 − γ ∗ π = 2 ˆ ◦ pion mass: m 2 m ) v ( m ) ⇒ m π increases with m faster than ordinary ChPT for γ ∗ m < 1 10

  12. Varying n f towards n ∗ f • what happens at the conformal sill? Λ 2 ≪ Λ 2 ∼ m 2 m 2 O ( n f − n ∗ � � π,τ = f ) + O ( m/ Λ) non − NGB ⇒ even though chiral symm. breaking scale Λ → 0 when n f → n ∗ f , m π,τ vanish faster, consistent with EFT framework • condensate enhancement (needs ˜ c 00 > 0 ) � � ψψ = − B π v = − 1 ˜ c 00 e − γ ∗ m v 4 − f ) (“gauge” choice ˜ c 01 = 0 ) ˆ c 11 ( n f − n ∗ f π ˜ f 3 π 11

  13. Summary & further comments • light scalar found in chirally broken “walking” theories β ( g 2 c ) ∝ n f − n ∗ • crude dynamical model (2-loop + gap equation): f = n f − 4 T an ∼ ( n f − n ∗ • main assumption: f ) at the onset of ChSB • EFT allows for systematic treatment of both pions and the dilatonic meson ◦ for two-index (and higher) irreps, asymptotic freedom forbids N f → ∞ can try the EFT anyway, for fixed N c , N f assuming N f − N ∗ f small with a non-integer N ∗ f close to (and above) integer N f ◦ can add SM fermions as in other composite Higgs models fermion-dilaton coupling ∝ fermion mass 12

  14. Matching the trace anomaly • dilatation current: S µ = x ν Θ µν = x ν ( T µν + K µν / 3) ˆ f τ 3 ( − δ µν p 2 + p µ p ν ) e ipx � 0 | Θ µν ( x ) | τ � = ip µ ˆ f τ e ipx � 0 | S µ ( x ) | τ � = • anomalous divergence shows up at leading order in EFT: m ) m f 2 π B π τ B τ e 4 τ + (1 + γ ∗ e (3 − γ ∗ c 11 ( n f − n ∗ f ) f 2 m ) τ tr (Σ + Σ † ) ∂ µ S µ = ˜ 2 − β ( g 2 ) 4 g 2 F 2 (EFT) − (1 + γ ∗ = m ) m ψψ (EFT) ˆ f 2 π m 2 � � ◦ GMOR relation for m → 0 : − (2 m/N f ) ψψ = π ˆ − ( β ( g 2 ) /g 2 ) F 2 � f 2 τ m 2 � ◦ GMOR-like relation for dilatonic meson: = τ 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend