locally identifying colorings of graphs
play

Locally identifying colorings of graphs Aline Parreau Joint work - PowerPoint PPT Presentation

Locally identifying colorings of graphs Aline Parreau Joint work with: Louis Esperet, Sylvain Gravier, Micka el Montassier, Pascal Ochem and: Florent Foucaud, Iiro Honkala, Tero Laihonen, Guillem Perarnau Bordeaux Workshop on Identifying


  1. Locally identifying colorings of graphs Aline Parreau Joint work with: Louis Esperet, Sylvain Gravier, Micka¨ el Montassier, Pascal Ochem and: Florent Foucaud, Iiro Honkala, Tero Laihonen, Guillem Perarnau Bordeaux Workshop on Identifying Codes November 21-25, 2011 1/13

  2. Identification with colors ? Identifying coloring of a graph G : • c : V → N • c ( N [ x ]) � = c ( N [ y ]) for any vertices x � = y • χ id ( G ): minimum number of colors needed to identify G 1 2 1 2 3 2 2/13

  3. Identification with colors ? Identifying coloring of a graph G : • c : V → N • c ( N [ x ]) � = c ( N [ y ]) for any vertices x � = y • χ id ( G ): minimum number of colors needed to identify G { 1 , 2 } { 1 , 2 , 3 } { 1 , 2 } 1 2 1 2 3 2 { 1 , 2 , 3 } { 2 , 3 } { 1 , 2 , 3 } 2/13

  4. Identification with colors ? Identifying coloring of a graph G : • c : V → N • c ( N [ x ]) � = c ( N [ y ]) for any vertices x � = y • χ id ( G ): minimum number of colors needed to identify G { 1 , 2 } { 1 , 2 , 3 , 4 } { 2 , 4 } 1 2 4 2 3 2 { 1 , 2 , 3 } { 2 , 3 } { 2 , 3 , 4 } 2/13

  5. Identification with colors ? Identifying coloring of a graph G : • c : V → N • c ( N [ x ]) � = c ( N [ y ]) for any vertices x � = y • χ id ( G ): minimum number of colors needed to identify G Few remarks: • only exists for twin-free graphs (like id-codes) • χ id ( G ) ≤ γ ID ( G ) + 1 1 2 3 ⇒ 4 4 4 2/13

  6. Global to local colorings Identifying coloring of a graph G = ( V , E ): • c : V → N ; • For any x � = y in V , c ( N [ x ]) � = c ( N [ y ]); • χ id ( G ): minimum number of colors needed to identify G ; Locally identifying coloring (lid-coloring) of a graph G = ( V , E ): • c : V → N , c ( x ) � = c ( y ) for xy ∈ E ; • For any xy ∈ E , c ( N [ x ]) � = c ( N [ y ]), if possible ; • χ lid ( G ): min. number of colors needed to locally identify G . 3/13

  7. Global to local colorings Identifying coloring of a graph G = ( V , E ): • c : V → N ; • For any x � = y in V , c ( N [ x ]) � = c ( N [ y ]); • χ id ( G ): minimum number of colors needed to identify G ; Locally identifying coloring (lid-coloring) of a graph G = ( V , E ): • c : V → N , c ( x ) � = c ( y ) for xy ∈ E ; • For any xy ∈ E , c ( N [ x ]) � = c ( N [ y ]), if possible ; • χ lid ( G ): min. number of colors needed to locally identify G . Why? • Always exists. • Refinment of classic colorings: χ ( G ) ≤ χ lid ( G ) 3/13

  8. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 4/13

  9. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 4/13

  10. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 3 1 2 4 4 2 3 1 2 4 1 3 1 3 4 2 χ lid ( G ) ≤ 4 4/13

  11. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 1 1 χ lid ( G ) ? = 4 4/13

  12. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 1 3 2 1 χ lid ( G ) ? = 4 4/13

  13. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 1 3 2 1 χ lid ( G ) = 4 but χ ( G ) = 3 4/13

  14. An example Def: ∀ xy ∈ E , c ( x ) � = c ( y ) and c ( N [ x ]) � = c ( N [ y ]) 1 3 2 1 χ lid ( G ) = 4 but χ ( G ) = 3 For each k , there exists graph G k s.t χ ( G k ) = 3 and χ lid ( G k ) = k No upper bound with χ ! 4/13

  15. Upper bound on a graph with n vertices ? Classic colorings: χ ( G ) = n ⇔ G = K n Lid-colorings: for which graphs χ lid ( G ) = n ? 5/13

  16. Upper bound on a graph with n vertices ? Classic colorings: χ ( G ) = n ⇔ G = K n Lid-colorings: for which graphs χ lid ( G ) = n ? • K n • P k − 1 : 2 k 1 2 3 4 5 6 Extremal graph for identifying codes ! 5/13

  17. Upper bound on a graph with n vertices ? Classic colorings: χ ( G ) = n ⇔ G = K n Lid-colorings: for which graphs χ lid ( G ) = n ? • K n • P k − 1 : 2 k 1 2 3 4 5 6 Extremal graph for identifying codes ! • ... ? Open question Caracterize graphs G such that χ lid ( G ) = n . 5/13

  18. Maximum degree Classic colorings: χ ( G ) ≤ ∆ + 1, tight Lid-colorings: • χ lid ( G ) ≤ χ ( G 3 ) ≤ ∆ 3 − ∆ 2 + ∆ + 1 • Graphs with χ lid ( G ) ≥ ∆ 2 − ∆ + 1 6/13

  19. Maximum degree Classic colorings: χ ( G ) ≤ ∆ + 1, tight Lid-colorings: • χ lid ( G ) ≤ χ ( G 3 ) ≤ ∆ 3 − ∆ 2 + ∆ + 1 • Graphs with χ lid ( G ) ≥ ∆ 2 − ∆ + 1 6/13

  20. Maximum degree Classic colorings: χ ( G ) ≤ ∆ + 1, tight Lid-colorings: • χ lid ( G ) ≤ χ ( G 3 ) ≤ ∆ 3 − ∆ 2 + ∆ + 1 • Graphs with χ lid ( G ) ≥ ∆ 2 − ∆ + 1 Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2011 + ) For any graph G with ∆ ≥ 3: χ lid ( G ) ≤ 2∆ 2 − 3∆ + 3 Open question Do we always have χ lid ( G ) ≤ ∆ 2 + O (∆) ? 6/13

  21. Bipartite graphs: the paths With 4 colors : 7/13

  22. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 7/13

  23. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 1 , 2 1 , 2 , 3 2 , 3 , 4 1 , 3 , 4 1 , 2 , 4 1 , 2 , 3 2 , 3 , 4 3 , 4 So: χ lid ( P k ) ≤ 4 7/13

  24. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 1 , 2 1 , 2 , 3 2 , 3 , 4 1 , 3 , 4 1 , 2 , 4 1 , 2 , 3 2 , 3 , 4 3 , 4 So: χ lid ( P k ) ≤ 4 Is it possible with 3 colors ? 7/13

  25. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 1 , 2 1 , 2 , 3 2 , 3 , 4 1 , 3 , 4 1 , 2 , 4 1 , 2 , 3 2 , 3 , 4 3 , 4 So: χ lid ( P k ) ≤ 4 Is it possible with 3 colors ? 1 2 1 , 2 7/13

  26. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 1 , 2 1 , 2 , 3 2 , 3 , 4 1 , 3 , 4 1 , 2 , 4 1 , 2 , 3 2 , 3 , 4 3 , 4 So: χ lid ( P k ) ≤ 4 Is it possible with 3 colors ? 1 2 3 1 , 2 1 , 2 , 3 7/13

  27. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 1 , 2 1 , 2 , 3 2 , 3 , 4 1 , 3 , 4 1 , 2 , 4 1 , 2 , 3 2 , 3 , 4 3 , 4 So: χ lid ( P k ) ≤ 4 Is it possible with 3 colors ? 1 2 3 2 1 , 2 1 , 2 , 3 2 , 3 7/13

  28. Bipartite graphs: the paths With 4 colors : 1 2 3 4 1 2 3 4 1 , 2 1 , 2 , 3 2 , 3 , 4 1 , 3 , 4 1 , 2 , 4 1 , 2 , 3 2 , 3 , 4 3 , 4 So: χ lid ( P k ) ≤ 4 Is it possible with 3 colors ? 1 2 3 2 1 2 3 2 2 , 3 2 , 3 1 , 2 1 , 2 , 3 2 , 3 1 , 2 , 3 1 , 2 1 , 2 , 3 χ lid ( P k ) = 3 ⇔ k is odd ... χ lid is not heriditary ! 7/13

  29. Bipartite graphs L 0 L 1 L 2 L 3 L 4 8/13

  30. Bipartite graphs → L 0 1 1 , 2 → L 1 2 1 , 2 , 3 → L 2 3 2 , 3 , 4 or 2 , 3 → L 3 4 1 , 3 , 4 or 3 , 4 → L 4 1 1 , 4 • 3 ≤ χ lid ( B ) ≤ 4 • To decide between 3 and 4 is NP-complete (reduction from 2-coloring of hypergraph) • Polynomial for trees, grids and hypercubes ( χ lid = 3), regular bipartite graphs... 8/13

  31. Perfect Graphs Perfect Line of bipartite Permutation Cograph Chordal Bipartite Split Interval k -trees Trees 9/13

  32. Perfect Graphs Perfect Line of bipartite Permutation Cograph Chordal Bipartite Bipartite ≤ 4 = 2 χ Split Interval k -trees ≤ 4 = 2 χ Trees Trees 9/13

  33. Perfect Graphs Not bounded by χ Perfect Perfect Line of bipartite Permutation Cograph Cograph Chordal Chordal ? ≤ 2 χ Bipartite Bipartite ≤ 4 = 2 χ Split Split Interval Interval k -trees k -trees ≤ 2 χ ≤ 2 χ ≤ 2 χ ≤ 4 = 2 χ Trees Trees Open question Do we have χ lid ( G ) ≤ 2 χ ( G ) for a chordal graph G ? 9/13

  34. Planar Graphs Planar graphs: • Worse example : 8 colors, • Really large (1000 ?) bound by Gonzcales and Pinlou P 3 8 10/13

  35. Planar Graphs Planar graphs: • Worse example : 8 colors, • Really large (1000 ?) bound by Gonzcales and Pinlou • With large girth (36) bounded by 5 P 3 8 10/13

  36. Planar Graphs Planar graphs: • Worse example : 8 colors, • Really large (1000 ?) bound by Gonzcales and Pinlou • With large girth (36) bounded by 5 P 3 8 10/13

  37. Planar Graphs Planar graphs: • Worse example : 8 colors, • Really large (1000 ?) bound by Gonzcales and Pinlou • With large girth (36) bounded by 5 P 3 8 Outerplanar graphs: • General bound: 20 colors, • Max outerplanar graphs: ≤ 6 colors, • Without triangles: ≤ 8 colors, P 2 • Examples with at most 6 colors 6 Open question Do we have χ lid ( G ) ≤ 8 for planar graphs and χ lid ( G ) ≤ 6 for outer- planar graphs ? 10/13

  38. A remark • For some subclasses of perfect graphs : χ lid ( G ) ≤ 2 ω ( G ) = 2 χ ( G ) • For planar graphs, worse example : χ lid ( G ) ≤ 8 = 2 χ ( G ) • For outerplanar graphs, worse example : χ lid ( G ) ≤ 6 = 2 χ ( G ) • ... Open question For which graphs do we have χ lid ( G ) ≤ 2 χ ( G ) ? 11/13

  39. Another remark • χ lid ( G ) = 2 ⇔ G = K 2 • χ lid ( G ) = 3 ⇒ G = K 3 or G is bipartite • χ lid ( G ) = 3 and χ ( G ) = 3 ⇔ G = K 3 Open question Caracterize graphs G such that χ lid ( G ) = χ ( G ). Are they only the complete graphs ? 12/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend